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Preface

Suppose you sit down at your computer to check your email. One of the
messages includes an attached document, which you are to edit. You click
the attachment, and it opens up in another window. After you start edit-
ing the document, you realize you need to leave for a trip. You save the
document in its partially edited state and shut down the computer to save
energy while you are gone. Upon returning, you boot the computer back
up, open the document, and continue editing.

This scenario illustrates that computations interact. In fact, it demon-
strates at least three kinds of interactions between computations. In each
case, one computation provides data to another. First, your email program
retrieves new mail from the server, using the Internet to bridge space. Sec-
ond, your email program provides the attachment to the word processor,
using the operating system’s services to couple the two application pro-
grams. Third, the invocation of the word processor that is running before
your trip provides the partially edited document to the invocation running
after your return, using disk storage to bridge time.

In this book, you will learn about all three kinds of interaction. In all
three cases, interesting software techniques are needed in order to bring the
computations into contact, yet keep them sufficiently at arm’s length that
they don’t compromise each other’s reliability. The exciting challenge, then,
is supporting controlled interaction. This includes support for computations
that share a single computer and interact with one another, as your email
and word processing programs do. It also includes support for data storage
and network communication. This book describes how all these kinds of
support are provided both by operating systems and by additional software
layered on top of operating systems, which is known as middleware.

xi
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Audience

If you are an upper-level computer science student who wants to under-
stand how contemporary operating systems and middleware products work
and why they work that way, this book is for you. In this book, you will
find many forms of balance. The high-level application programmer’s view,
focused on the services that system software provides, is balanced with a
lower-level perspective, focused on the mechanisms used to provide those
services. Timeless concepts are balanced with concrete examples of how
those concepts are embodied in a range of currently popular systems. Pro-
gramming is balanced with other intellectual activities, such as the scientific
measurement of system performance and the strategic consideration of sys-
tem security in its human and business context. Even the programming
languages used for examples are balanced, with some examples in Java and
others in C or C++. (Only limited portions of these languages are used,
however, so that the examples can serve as learning opportunities, not stum-
bling blocks.)

Systems Used as Examples

Most of the examples throughout the book are drawn from the two dominant
families of operating systems: Microsoft Windows and the UNIX family,
including especially Linux and Mac OS X. Using this range of systems pro-
motes the students’ flexibility. It also allows a more comprehensive array of
concepts to be concretely illustrated, as the systems embody fundamentally
different approaches to some problems, such as the scheduling of processors’
time and the tracking of files’ disk space.

Most of the examples are drawn from the stable core portions of the
operating systems and, as such, are equally applicable to a range of spe-
cific versions. Whenever Microsoft Windows is mentioned without further
specification, the material should apply to Windows NT, Windows 2000,
Windows XP, Windows Server 2003, Windows Vista, Windows 2008, Win-
dows 7, Windows 8, Windows 2012, and Windows 10. All Linux examples
are from version 2.6, though much of the material applies to other versions
as well. Wherever actual Linux source code is shown (or whenever fine de-
tails matter for other reasons), the specific subversion of 2.6 is mentioned
in the end-of-chapter notes. Most of the Mac OS X examples originated
with version 10.4, also known as Tiger, but should be applicable to other
versions.
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Where the book discusses the protection of each process’s memory, one
additional operating system is brought into the mix of examples, in order
to illustrate a more comprehensive range of alternative designs. The IBM
iSeries, formerly known as the AS/400, embodies an interesting approach
to protection that might see wider application within current students’ life-
times. Rather than giving each process its own address space (as Linux,
Windows, and Mac OS X do), the iSeries allows all processes to share a
single address space and to hold varying access permissions to individual
objects within that space.

Several middleware systems are used for examples as well. The Ora-
cle database system is used to illustrate deadlock detection and recovery
as well as the use of atomic transactions. Messaging systems appear both
as another application of atomic transactions and as an important form of
communication middleware, supporting distributed applications. The spe-
cific messaging examples are drawn from the IBM WebSphere MQ system
(formerly MQSeries) and the Java Message Service (JMS) interface, which
is part of Java 2 Enterprise Edition (J2EE). The other communication mid-
dleware example is Java RMI (Remote Method Invocation).

Organization of the Text

Chapter 1 provides an overview of the text as a whole, explaining what an
operating system is, what middleware is, and what sorts of support these
systems provide for controlled interaction.

The next nine chapters work through the varieties of controlled interac-
tion that are exemplified by the scenario at the beginning of the preface: in-
teraction between concurrent computations on the same system (as between
your email program and your word processor), interaction across time (as
between your word processor before your trip and your word processor after
your trip), and interaction across space (as between your email program and
your service provider’s email server).

The first of these three topics is controlled interaction between computa-
tions operating at one time on a particular computer. Before such interaction
can make sense, you need to understand how it is that a single computer
can be running more than one program, such as an email program in one
window and a word processing program in another. Therefore, Chapter 2
explains the fundamental mechanism for dividing a computer’s attention
between concurrent computations, known as threads. Chapter 3 continues
with the related topic of scheduling. That is, if the computer is dividing its
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time between computations, it needs to decide which ones to work on at any
moment.

With concurrent computations explained, Chapter 4 introduces con-
trolled interactions between them by explaining synchronization, which is
control over the threads’ relative timing. For example, this chapter explains
how, when your email program sends a document to your word processor,
the word processor can be constrained to read the document only after the
email program writes it. One particularly important form of synchroniza-
tion, atomic transactions, is the topic of Chapter 5. Atomic transactions
are groups of operations that take place as an indivisible unit; they are
most commonly supported by middleware, though they are also playing an
increasing role in operating systems.

Other than synchronization, the main way that operating systems con-
trol the interaction between computations is by controlling their access to
memory. Chapter 6 explains how this is achieved using the technique known
as virtual memory. That chapter also explains the many other objectives
this same technique can serve. Virtual memory serves as the foundation for
Chapter 7’s topic, which is processes. A process is the fundamental unit of
computation for protected access, just as a thread is the fundamental unit
of computation for concurrency. A process is a group of threads that share a
protection environment; in particular, they share the same access to virtual
memory.

The next three chapters move outside the limitations of a single com-
puter operating in a single session. First, consider the document stored
before a trip and available again after it. Chapter 8 explains persistent
storage mechanisms, focusing particularly on the file storage that operat-
ing systems provide. Second, consider the interaction between your email
program and your service provider’s email server. Chapter 9 provides an
overview of networking, including the services that operating systems make
available to programs such as the email client and server. Chapter 10 ex-
tends this discussion into the more sophisticated forms of support provided
by communication middleware, such as messaging systems, RMI, and web
services.

Finally, Chapter 11 focuses on security. Because security is a pervasive
issue, the preceding ten chapters all provide some information on it as well.
Specifically, the final section of each chapter points out ways in which se-
curity relates to that chapter’s particular topic. However, even with that
coverage distributed throughout the book, a chapter specifically on security
is needed, primarily to elevate it out of technical particulars and talk about
general principles and the human and organizational context surrounding
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the computer technology.
The best way to use these chapters is in consecutive order. However,

Chapter 5 can be omitted with only minor harm to Chapters 8 and 10, and
Chapter 9 can be omitted if students are already sufficiently familiar with
networking.

Relationship to Computer Science Curriculum 2008

Operating systems are traditionally the subject of a course required for all
computer science majors. In recent years, however, there has been increasing
interest in the idea that upper-level courses should be centered less around
particular artifacts, such as operating systems, and more around cross-
cutting concepts. In particular, the Computing Curricula 2001 (CC2001)
and its interim revision, Computer Science Curriculum 2008 (CS2008), pro-
vide encouragement for this approach, at least as one option. Most colleges
and universities still retain a relatively traditional operating systems course,
however. Therefore, this book steers a middle course, moving in the direc-
tion of the cross-cutting concerns while retaining enough familiarity to be
broadly adoptable.

The following table indicates the placement within this text of knowledge
units from CS2008’s computer science body of knowledge. Those knowledge
units designated as core units within CS2008 are listed in italics. The book
covers all core operating systems (OS) units, as well as one elective OS unit.
The overall amount of coverage for each unit is always at least that rec-
ommended by CS2008, though sometimes the specific subtopics don’t quite
correspond exactly. Outside the OS area, this book’s most substantial cov-
erage is of Net-Centric Computing (NC); another major topic, transaction
processing, comes from Information Management (IM). In each row, the
listed chapters contain the bulk of the knowledge unit’s coverage, though
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some topics may be elsewhere.

Knowledge unit
(italic indicates core units in CS2008) Chapter(s)

OS/OverviewOfOperatingSystems 1
OS/OperatingSystemPrinciples 1, 7
OS/Concurrency 2, 4
OS/SchedulingAndDispatch 3
OS/MemoryManagement 6
OS/SecurityAndProtection 7, 11
OS/FileSystems 8
NC/Introduction 9
NC/NetworkCommunication (partial coverage) 9
NC/NetworkSecurity (partial coverage) 9
NC/WebOrganization (partial coverage) 9
NC/NetworkedApplications (partial coverage) 10
IM/TransactionProcessing 5

Your Feedback Is Welcome

Comments, suggestions, and bug reports are welcome; please send email to
max@gustavus.edu or use the github issue tracker. Bug reports can earn
you a bounty of $2.56 apiece as a token of gratitude. (The great computer
scientist Donald Knuth started this tradition. Given how close to bug-free
his publications have become, it seems to work.) For purposes of this reward,
the definition of a bug is simple: if as a result of your comment the author
chooses to make a change, then you have pointed out a bug. The change
need not be the one you suggested, and the bug need not be technical in
nature. Unclear writing qualifies, for example.

Features of the Text

Each chapter concludes with five standard elements. The last numbered sec-
tion within the chapter is always devoted to security matters related to the
chapter’s topic. Next comes three different lists of opportunities for active
participation by the student: exercises, programming projects, and explo-
ration projects. Finally, the chapter ends with historical and bibliographic
notes.

The distinction between exercises, programming projects, and explo-
ration projects needs explanation. An exercise can be completed with no
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outside resources beyond paper and pencil: you need just this textbook and
your mind. That does not mean all the exercises are cut and dried, however.
Some may call upon you to think creatively; for these, no one answer is cor-
rect. Programming projects require a nontrivial amount of programming;
that is, they require more than making a small, easily identified change in
an existing program. However, a programming project may involve other
activities beyond programming. Several of them involve scientific measure-
ment of performance effects, for example; these exploratory aspects may
even dominate over the programming aspects. An exploration project, on
the other hand, can be an experiment that can be performed with no real
programming; at most you might change a designated line within an ex-
isting program. The category of exploration projects does not just include
experimental work, however. It also includes projects that require you to do
research on the Internet or using other library resources.

Supplemental Resources

The author of this text is making supplemental resources available on his own
website. Additionally, the publisher of the earlier first edition commissioned
additional resources from independent supplement authors, which may still
be available through the publisher’s website and would largely still apply
to this revised edition. The author’s website, https:// gustavus.edu/ +max/
os-book/ , contains at least the following materials:

• Full text of this revised edition

• Source code in Java, C, or C++ for all programs that are shown in
the text

• Artwork files for all figures in the text

• A link to the book’s github site, which includes an issue tracker (errata
list)

About the Revised Edition

Course Technology published the first edition of this book in January of 2006
and in October of 2010 assigned the copyright back to the author, giving
him the opportunity to make it freely available. This revised edition closely
follows the first edition; rather than being a thorough update, it is aimed at
three narrow goals:

https://gustavus.edu/+max/os-book/
https://gustavus.edu/+max/os-book/
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• All errata reported in the first edition are corrected.

• A variety of other minor improvements appear throughout, such as
clarified explanations and additional exercises, projects, and end-of-
chapter notes.

• Two focused areas received more substantial updates:

– The explanation of Linux’s scheduler was completely replaced
to correspond to the newer “Completely Fair Scheduler” (CFS),
including its group scheduling feature.

– A new section, 4.9, was added on nonblocking synchronization.

In focusing on these limited goals, a key objective was to maintain as
much compatibility with the first edition as possible. Although page num-
bering changed, most other numbers stayed the same. All new exercises
and projects were added to the end of the corresponding lists for that rea-
son. The only newly added section, 4.9, is near the end of its chapter; thus,
the only changed section number is that the old Section 4.9 (“Security and
Synchronization”) became 4.10. Only in Chapter 4 did any figure numbers
change.

It is my hope that others will join me in making further updates and
improvements to the text. I am releasing it under a Creative Commons
license that allows not just free copying, but also the freedom to make mod-
ifications, so long as the modified version is released under the same terms.
In order to make such modifications practical, I’m not just releasing the
book in PDF form, but also as a collection of LATEX source files that can
be edited and then run through the pdflatex program (along with bibtex

and makeindex). The source file collection also includes PDF files of all
artwork figures; Course Technology has released the rights to the artwork
they contracted to have redrawn. All of this is on the github site.

If you produce a modified version of this text, the Creative Commons
license allows you considerable flexibility in how you make your modified
version available. I would urge you to contribute it back using a “pull
request” on the main github site—we will all benefit from having a central
repository of progress. Separate materials to supplement the text would also
be welcome. One category that occurs to me is animations or screencasts;
the static figures in the text are rather limited. Another worthwhile project
would be to transform the text into a more contribution-friendly form, such
as a wiki.
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Chapter 1

Introduction

1.1 Chapter Overview

This book covers a lot of ground. In it, I will explain to you the basic
principles that underlie a broad range of systems and also give you concrete
examples of how those principles play out in several specific systems. You
will see not only some of the internal workings of low-level infrastructure,
but also how to build higher-level applications on top of that infrastructure
to make use of its services. Moreover, this book will draw on material you
may have encountered in other branches of computer science and engineer-
ing and engage you in activities ranging from mathematical proofs to the
experimental measurement of real-world performance and the consideration
of how systems are used and abused in social context.

Because the book as a whole covers so much ground, this chapter is
designed to give you a quick view of the whole terrain, so that you know
what you are getting into. This is especially important because several of
the topics I cover are interrelated, so that even though I carefully designed
the order of presentation, I am still going to confront you with occasional
forward references. You will find, however, that this introductory chapter
gives you a sufficient overview of all the topics so that you won’t be mystified
when a chapter on one makes some reference to another.

In Section 1.2, I will explain what an operating system is, and in Sec-
tion 1.3, I will do the same for middleware. After these two sections, you
will know what general topic you are studying. Section 1.4 gives you some
reasons for studying that topic, by explaining several roles that I hope this
book will serve for you.

After the very broad overview provided by these initial sections, the

1
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remaining sections of this chapter are somewhat more focused. Each corre-
sponds to one or more of the later chapters and explains one important cat-
egory of service provided by operating systems and middleware. Section 1.5
explains how a single computer can run several computations concurrently,
a topic addressed in more depth by Chapters 2 and 3. Section 1.6 explains
how interactions between those concurrent computations can be kept under
control, the topic of Chapters 4 through 7. Sections 1.7 and 1.8 extend
the range of interacting computations across time and space, respectively,
through mechanisms such as file systems and networking. They preview
Chapter 8 and Chapters 9 and 10. Finally, Section 1.9 introduces the topic
of security, a topic I revisit at the end of each chapter and then focus on in
Chapter 11.

1.2 What Is an Operating System?

An operating system is software that uses the hardware resources of a com-
puter system to provide support for the execution of other software. Specif-
ically, an operating system provides the following services:

• The operating system allows multiple computations to take place con-
currently on a single computer system. It divides the hardware’s time
between the computations and handles the shifts of focus between the
computations, keeping track of where each one leaves off so that it can
later correctly resume.

• The operating system controls the interactions between the concurrent
computations. It can enforce rules, such as forbidding computations
from modifying data structures while other computations are accessing
those structures. It can also provide isolated areas of memory for
private use by the different computations.

• The operating system can provide support for controlled interaction of
computations even when they do not run concurrently. In particular,
general-purpose operating systems provide file systems, which allow
computations to read data from files written by earlier computations.
This feature is optional because an embedded system, such as the
computer controlling a washing machine, might in some cases run an
operating system, but not provide a file system or other long-term
storage.
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• The operating system can provide support for controlled interaction
of computations spread among different computer systems by using
networking. This is another standard feature of general-purpose oper-
ating systems.

These services are illustrated in Figure 1.1.
If you have programmed only general-purpose computers, such as PCs,

workstations, and servers, you have probably never encountered a computer
system that was not running an operating system or that did not allow mul-
tiple computations to be ongoing. For example, when you boot up your own
computer, chances are it runs Linux, Microsoft Windows, or Mac OS X and
that you can run multiple application programs in individual windows on
the display screen. These three operating systems will serve as my primary
examples throughout the book.

To illustrate that a computer can run a single program without an op-
erating system, consider embedded systems. A typical embedded system
might have neither keyboard nor display screen. Instead, it might have
temperature and pressure sensors and an output that controls the fuel in-
jectors of your car. Alternatively, it might have a primitive keyboard and
display, as on a microwave oven, but still be dedicated to running a single
program.

Some of the most sophisticated embedded systems run multiple cooper-
ating programs and use operating systems. However, more mundane embed-
ded systems take a simpler form. A single program is directly executed by
the embedded processor. That program contains instructions to read from
input sensors, carry out appropriate computations, and write to the output
devices. This sort of embedded system illustrates what is possible without
an operating system. It will also serve as a point of reference as I contrast
my definition of an operating system with an alternative definition.

One popular alternative definition of an operating system is that it pro-
vides application programmers with an abstract view of the underlying hard-
ware resources, taking care of the low-level details so that the applications
can be programmed more simply. For example, the programmer can write
a simple statement to output a string without concern for the details of
making each character appear on the display screen.

I would counter by remarking that abstraction can be provided with-
out an operating system, by linking application programs with separately
written libraries of supporting procedures. For example, a program could
output a string using the standard mechanism of a programming language,
such as C++ or Java. The application programmer would not need to know
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Application Operating System

Application

File

ApplicationApplication

Operating System

networking

(a) (b)

Figure 1.1: Without an operating system, a computer can directly execute
a single program, as shown in part (a). Part (b) shows that with an oper-
ating system, the computer can support concurrent computations, control
the interactions between them (suggested by the dashed line), and allow
communication across time and space by way of files and networking.

anything about hardware. However, rather than running on an operating
system, the program could be linked together with a library that performed
the output by appropriately manipulating a microwave oven’s display panel.
Once running on the oven’s embedded processor, the library and the appli-
cation code would be a single program, nothing more than a sequence of
instructions to directly execute. However, from the application program-
mer’s standpoint, the low-level details would have been successfully hidden.

To summarize this argument, a library of input/output routines is not
the same as an operating system, because it satisfies only the first part of
my definition. It does use underlying hardware to support the execution of
other software. However, it does not provide support for controlled inter-
action between computations. In fairness to the alternative viewpoint, it is
the more historically grounded one. Originally, a piece of software could be
called an operating system without supporting controlled interaction. How-
ever, the language has evolved such that my definition more closely reflects
current usage.

I should also address one other alternative view of operating systems,
because it is likely to be the view you have formed from your own experience
using general-purpose computers. You are likely to think of an operating
system as the software with which you interact in order to carry out tasks
such as running application programs. Depending on the user interface to
which you are accustomed, you might think the operating system is what
allows you to click program icons to run them, or you might think the
operating system is what interprets commands you type.
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There is an element of truth to this perception. The operating system
does provide the service of executing a selected application program. How-
ever, the operating system provides this service not to human users clicking
icons or typing commands, but to other programs already running on the
computer, including the one that handles icon clicks or command entries.
The operating system allows one program that is running to start another
program running. This is just one of the many services the operating system
provides to running programs. Another example service is writing output
into a file. The sum total of features the operating system makes available
for application programmers to use in their programs is called the Applica-
tion Programming Interface (API ). One element of the API is the ability to
run other programs.

The reason why you can click a program icon or type in a command
to run a program is that general-purpose operating systems come bundled
with a user-interface program, which uses the operating system API to run
other programs in response to mouse or keyboard input. At a marketing
level, this user-interface program may be treated as a part of the operating
system; it may not be given a prominent name of its own and may not be
available for separate purchase.

For example, Microsoft Windows comes with a user interface known
as File Explorer, which provides features such as the Start menu and the
ability to click icons. (This program was named Windows Explorer prior to
Windows 8.) However, even if you are an experienced Windows user, you
may never have heard of File Explorer; Microsoft has chosen to give it a
very low profile, treating it as an integral part of the Microsoft Windows
environment. At a technical level, however, it is distinct from the operating
system proper. In order to make the distinction explicit, the true operating
system is often called the kernel. The kernel is the fundamental portion
of Microsoft Windows that provides an API supporting computations with
controlled interactions.

A similar distinction between the kernel and the user interface applies
to Linux. The Linux kernel provides the basic operating system services
through an API, whereas shells are the programs (such as bash and tcsh)
that interpret typed commands, and desktop environments are the programs,
such as KDE (K Desktop Environment) and GNOME, that handle graphical
interaction.

In this book, I will explain the workings of operating system kernels,
the true operating systems themselves, as opposed to the user-interface pro-
grams. One reason is because user-interface programs are not constructed
in any fundamentally different way than normal application programs. The
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other reason is because an operating system need not have this sort of user
interface at all. Consider again the case of an embedded system that con-
trols automotive fuel injection. If the system is sufficiently sophisticated,
it may include an operating system. The main control program may run
other, more specialized programs. However, there is no ability for the user
to start an arbitrary program running through a shell or desktop environ-
ment. In this book, I will draw my examples from general-purpose systems
with which you might be familiar, but will emphasize the principles that
could apply in other contexts as well.

1.3 What Is Middleware?

Now that you know what an operating system is, I can turn to the other cat-
egory of software covered by this book: middleware. Middleware is software
occupying a middle position between application programs and operating
systems, as I will explain in this section.

Operating systems and middleware have much in common. Both are
software used to support other software, such as the application programs
you run. Both provide a similar range of services centered around con-
trolled interaction. Like an operating system, middleware may enforce rules
designed to keep the computations from interfering with one another. An
example is the rule that only one computation may modify a shared data
structure at a time. Like an operating system, middleware may bring com-
putations at different times into contact through persistent storage and may
support interaction between computations on different computers by pro-
viding network communication services.

Operating systems and middleware are not the same, however. They
rely upon different underlying providers of lower-level services. An operat-
ing system provides the services in its API by making use of the features
supported by the hardware. For example, it might provide API services
of reading and writing named, variable-length files by making use of a disk
drive’s ability to read and write numbered, fixed-length blocks of data. Mid-
dleware, on the other hand, provides the services in its API by making use
of the features supported by an underlying operating system. For example,
the middleware might provide API services for updating relational database
tables by making use of an operating system’s ability to read and write files
that contain the database.

This layering of middleware on top of an operating system, as illustrated
in Figure 1.2, explains the name; middleware is in the middle of the vertical
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stack, between the application programs and the operating system. Viewed
horizontally rather than vertically, middleware is also in the middle of in-
teractions between different application programs (possibly even running
on different computer systems), because it provides mechanisms to support
controlled interaction through coordination, persistent storage, naming, and
communication.

I already mentioned relational database systems as one example of mid-
dleware. Such systems provide a more sophisticated form of persistent stor-
age than the files supported by most operating systems. I use Oracle as my
primary source of examples regarding relational database systems. Other
middleware I will use for examples in the book includes the Java 2 Plat-
form, Enterprise Edition (J2EE) and IBM’s WebSphere MQ. These systems
provide support for keeping computations largely isolated from undesirable
interactions, while allowing them to communicate with one another even if
running on different computers.

The marketing definition of middleware doesn’t always correspond ex-
actly with my technical definition. In particular, some middleware is of
such fundamental importance that it is distributed as part of the operat-
ing system bundle, rather than as a separate middleware product. As an
example, general-purpose operating systems all come equipped with some
mechanism for translating Internet hostnames, such as www.gustavus.edu,
into numerical addresses. These mechanisms are typically outside the oper-
ating system kernel, but provide a general supporting service to application
programs. Therefore, by my definition, they are middleware, even if not
normally labeled as such.

ApplicationApplication

Middleware

Operating System

Application

Middleware

Operating System
Database

Table

Figure 1.2: Middleware uses services from an operating system and in turn
provides services to application programs to support controlled interaction.
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1.4 Objectives for the Book

If you work your way through this book, you will gain both knowledge
and skills. Notice that I did not say anything about reading the book, but
rather about working your way through the book. Each chapter in this book
concludes with exercises, programming projects, exploration projects, and
some bibliographic or historical notes. To achieve the objectives of the book,
you need to work exercises, carry out projects, and occasionally venture
down one of the side trails pointed out by the end-of-chapter notes. Some of
the exploration projects will specifically direct you to do research in outside
sources, such as on the Internet or in a library. Others will call upon you to
do experimental work, such as measuring the performance consequences of
a particular design choice. If you are going to invest that kind of time and
effort, you deserve some idea of what you stand to gain from it. Therefore, I
will explain in the following paragraphs how you will be more knowledgeable
and skilled after finishing the book.

First, you will gain a general knowledge of how contemporary operat-
ing systems and middleware work and some idea why they work that way.
That knowledge may be interesting in its own right, but it also has prac-
tical applications. Recall that these systems provide supporting APIs for
application programmers to use. Therefore, one payoff will be that if you
program applications, you will be positioned to make more effective use of
the supporting APIs. This is true even though you won’t be an expert at
any particular API; instead, you’ll see the big picture of what services those
APIs provide.

Another payoff will be if you are in a role where you need to alter the
configuration of an operating system or middleware product in order to tune
its performance or make it best serve a particular context. Again, this one
book alone won’t give you all the specific knowledge you need about any
particular system, but it will give you the general background to make sense
out of more specialized references.

Perhaps the most significant payoff for learning the details of today’s
systems in the context of the reasons behind their designs is that you will
be in a better position to learn tomorrow’s systems. You will be able to see
in what ways they are different and in what ways they are fundamentally
still the same. You will be able to put new features into context, often as
a new solution to an old problem, or even just as a variant on an existing
solution. If you really get excited by what you learn from this book, you
could even use your knowledge as the foundation for more advanced study
and become one of the people who develops tomorrow’s systems.
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Second, in addition to knowledge about systems, you will learn some
skills that are applicable even outside the context of operating systems and
middleware. Some of the most important skills come from the exploration
projects. For example, if you take those projects seriously, you’ll practice
not only conducting experiments, but also writing reports describing the
experiments and their results. That will serve you well in many contexts.

I have also provided you with some opportunities to develop proficiency
in using the professional literature, such as documentation and the papers
published in conference proceedings. Those sources go into more depth than
this book can, and they will always be more up-to-date.

From the programming projects, you’ll gain some skill at writing pro-
grams that have several interacting components operating concurrently with
one another and that keep their interactions under control. You’ll also de-
velop some skill at writing programs that interact over the Internet. In
neither case will you become a master programmer. However, in both cases,
you will be laying a foundation of skills that are relevant to a range of
development projects and environments.

Another example of a skill you can acquire is the ability to look at the
security ramifications of design decisions. I have a security section in each
chapter, rather than a security chapter only at the end of the book, because I
want you to develop the habit of asking, “What are the security issues here?”
That question is relevant even outside the realm of operating systems and
middleware.

As I hope you can see, studying operating systems and middleware can
provide a wide range of benefits, particularly if you engage yourself in it as
an active participant, rather than as a spectator. With that for motivation,
I will now take you on another tour of the services operating systems and
middleware provide. This tour is more detailed than Sections 1.2 and 1.3,
but not as detailed as Chapters 2 through 11.

1.5 Multiple Computations on One Computer

The single most fundamental service an operating system provides is to allow
multiple computations to be going on at the same time, rather than forcing
each to wait until the previous one has run to completion. This allows
desktop computers to juggle multiple tasks for the busy humans seated in
front of their screens, and it allows server computers to be responsive to
requests originating from many different client computers on the Internet.
Beyond these responsiveness concerns, concurrent computations can also
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make more efficient use of a computer’s resources. For example, while one
computation is stalled waiting for input to arrive, another computation can
be making productive use of the processor.

A variety of words can be used to refer to the computations underway
on a computer; they may be called threads, processes, tasks, or jobs. In this
book, I will use both the word “thread” and the word “process,” and it is
important that I explain now the difference between them.

A thread is the fundamental unit of concurrency. Any one sequence of
programmed actions is a thread. Executing a program might create multiple
threads, if the program calls for several independent sequences of actions run
concurrently with one another. Even if each execution of a program creates
only a single thread, which is the more normal case, a typical system will be
running several threads: one for each ongoing program execution, as well as
some that are internal parts of the operating system itself.

When you start a program running, you are always creating one or more
threads. However, you are also creating a process. The process is a container
that holds the thread or threads that you started running and protects
them from unwanted interactions with other unrelated threads running on
the same computer. For example, a thread running in one process cannot
accidentally overwrite memory in use by a different process.

Because human users normally start a new process running every time
they want to make a new computation happen, it is tempting to think of
processes as the unit of concurrent execution. This temptation is ampli-
fied by the fact that older operating systems required each process to have
exactly one thread, so that the two kinds of object were in one-to-one corre-
spondence, and it was not important to distinguish them. However, in this
book, I will consistently make the distinction. When I am referring to the
ability to set an independent sequence of programmed actions in motion, I
will write about creating threads. Only when I am referring to the ability
to protect threads will I write about creating processes.

In order to support threads, operating system APIs include features such
as the ability to create a new thread and to kill off an existing thread. In-
side the operating system, there must be some mechanism for switching
the computer’s attention between the various threads. When the operating
system suspends execution of one thread in order to give another thread a
chance to make progress, the operating system must store enough informa-
tion about the first thread to be able to successfully resume its execution
later. Chapter 2 addresses these issues.

Some threads may not be runnable at any particular time, because they
are waiting for some event, such as the arrival of input. However, in general,
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an operating system will be confronted with multiple runnable threads and
will have to choose which ones to run at each moment. This problem of
scheduling threads’ execution has many solutions, which are surveyed in
Chapter 3. The scheduling problem is interesting, and has generated so
many solutions, because it involves the balancing of system users’ competing
interests and values. No individual scheduling approach will make everyone
happy all the time. My focus is on explaining how the different scheduling
approaches fit different contexts of system usage and achieve differing goals.
In addition I explain how APIs allow programmers to exert control over
scheduling, for example, by indicating that some threads should have higher
priority than others.

1.6 Controlling the Interactions Between Compu-
tations

Running multiple threads at once becomes more interesting if the threads
need to interact, rather than execute completely independently of one an-
other. For example, one thread might be producing data that another thread
consumes. If one thread is writing data into memory and another is read-
ing the data out, you don’t want the reader to get ahead of the writer and
start reading from locations that have yet to be written. This illustrates one
broad family of control for interaction: control over the relative timing of
the threads’ execution. Here, a reading step must take place after the cor-
responding writing step. The general name for control over threads’ timing
is synchronization.

Chapter 4 explains several common synchronization patterns, includ-
ing keeping a consumer from outstripping the corresponding producer. It
also explains the mechanisms that are commonly used to provide synchro-
nization, some of which are supported directly by operating systems, while
others require some modest amount of middleware, such as the Java runtime
environment.

That same chapter also explains a particularly important difficulty that
can arise from the use of synchronization. Synchronization can force one
thread to wait for another. What if the second thread happens to be wait-
ing for the first? This sort of cyclic waiting is known as a deadlock. My
discussion of ways to cope with deadlock also introduces some significant
middleware, because database systems provide an interesting example of
deadlock handling.

In Chapter 5, I expand on the themes of synchronization and middleware
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by explaining transactions, which are commonly supported by middleware.
A transaction is a unit of computational work for which no intermediate
state from the middle of the computation is ever visible. Concurrent trans-
actions are isolated from seeing each other’s intermediate storage. Addi-
tionally, if a transaction should fail, the storage will be left as it was before
the transaction started. Even if the computer system should catastroph-
ically crash in the middle of a transaction’s execution, the storage after
rebooting will not reflect the partial transaction. This prevents results of a
half-completed transaction from becoming visible. Transactions are incred-
ibly useful in designing reliable information systems and have widespread
commercial deployment. They also provide a good example of how mathe-
matical reasoning can be used to help design practical systems; this will be
the chapter where I most prominently expect you to understand a proof.

Even threads that have no reason to interact may accidentally interact, if
they are running on the same computer and sharing the same memory. For
example, one thread might accidentally write into memory being used by the
other. This is one of several reasons why operating systems provide virtual
memory, the topic of Chapter 6. Virtual memory refers to the technique of
modifying addresses on their way from the processor to the memory, so that
the addresses actually used for storing values in memory may be different
from those appearing in the processor’s load and store instructions. This
is a general mechanism provided through a combination of hardware and
operating system software. I explain several different goals this mechanism
can serve, but the most simple is isolating threads in one process from those
in another by directing their memory accesses to different regions of memory.

Having broached the topic of providing processes with isolated virtual
memory, I devote Chapter 7 to processes. This chapter explains an API
for creating processes. However, I also focus on protection mechanisms, not
only by building on Chapter 6’s introduction of virtual memory, but also by
explaining other forms of protection that are used to protect processes from
one another and to protect the operating system itself from the processes.
Some of these protection mechanisms can be used to protect not just the
storage of values in memory, but also longer-term data storage, such as files,
and even network communication channels. Therefore, Chapter 7 lays some
groundwork for the later treatment of these topics.

Chapter 7 also provides me an opportunity to clarify one point about
threads left open by Chapter 2. By showing how operating systems pro-
vide a protective boundary between themselves and the running application
processes, I can explain where threads fall relative to this boundary. In par-
ticular, there are threads that are contained entirely within the operating
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system kernel, others that are contained entirely within an application pro-
cess, and yet others that cross the boundary, providing support from within
the kernel for concurrent activities within the application process. Although
it might seem natural to discuss these categories of threads in Chapter 2, the
chapter on threads, I really need to wait for Chapter 7 in order to make any
more sense out of the distinctions than I’ve managed in this introductory
paragraph.

When two computations run concurrently on a single computer, the hard
part of supporting controlled interaction is to keep the interaction under con-
trol. For example, in my earlier example of a pair of threads, one produces
some data and the other consumes it. In such a situation, there is no great
mystery to how the data can flow from one to the other, because both are
using the same computer’s memory. The hard part is regulating the use of
that shared memory. This stands in contrast to the interactions across time
and space, which I will address in Sections 1.7 and 1.8. If the producer and
consumer run at different times, or on different computers, the operating
system and middleware will need to take pains to convey the data from one
to the other.

1.7 Supporting Interaction Across Time

General purpose operating systems all support some mechanism for com-
putations to leave results in long-term storage, from which they can be
retrieved by later computations. Because this storage persists even when
the system is shut down and started back up, it is known as persistent stor-
age. Normally, operating systems provide persistent storage in the form of
named files, which are organized into a hierarchy of directories or folders.
Other forms of persistent storage, such as relational database tables and
application-defined persistent objects, are generally supported by middle-
ware. In Chapter 8, I focus on file systems, though I also explain some of
the connections with middleware. For example, I compare the storage of file
directories with that of database indexes. This comparison is particularly
important as these areas are converging. Already the underlying mecha-
nisms are very similar, and file systems are starting to support indexing
services like those provided by database systems.

There are two general categories of file APIs, both of which I cover in
Chapter 8. The files can be made a part of the process’s virtual mem-
ory space, accessible with normal load and store instructions, or they can
be treated separately, as external entities to read and write with explicit
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operations.
Either kind of file API provides a relatively simple interface to some quite

significant mechanisms hidden within the operating system. Chapter 8 also
provides a survey of some of these mechanisms.

As an example of a simple interface to a sophisticated mechanism, an
application programmer can make a file larger simply by writing additional
data to the end of the file. The operating system, on the other hand, has
to choose the location where the new data will be stored. When disks are
used, this space allocation has a strong influence on performance, because
of the physical realities of how disk drives operate.

Another job for the file system is to keep track of where the data for each
file is located. It also keeps track of other file-specific information, such as
access permissions. Thus, the file system not only stores the files’ data, but
also stores metadata, which is data describing the data.

All these mechanisms are similar to those used by middleware for pur-
poses such as allocating space to hold database tables. Operating systems
and middleware also store information, such as file directories and database
indexes, used to locate data. The data structures used for these naming and
indexing purposes are designed for efficient access, just like those used to
track the allocation of space to stored objects.

To make the job of operating systems and middleware even more chal-
lenging, persistent storage structures are expected to survive system crashes
without significant loss of integrity. For example, it is not acceptable after
a crash for specific storage space to be listed as available for allocation and
also to be listed as allocated to a file. Such a confused state must not occur
even if the crash happened just as the file was being created or deleted.
Thus, Chapter 8 builds on Chapter 5’s explanation of atomic transactions,
while also outlining some other mechanisms that can be used to protect the
integrity of metadata, directories, and indexes.

Persistent storage is crucially important, perhaps even more so in the
Internet age than in prior times, because servers now hold huge amounts of
data for use by clients all over the world. Nonetheless, persistent storage no
longer plays as unique a role as it once did. Once upon a time, there were
many computer systems in which the only way processes communicated was
through persistent storage. Today, that is almost unthinkable, because com-
munication often spans the Internet. Therefore, as I explain in Section 1.8,
operating systems provide support for networking, and middleware provides
further support for the construction of distributed systems.
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1.8 Supporting Interaction Across Space

In order to build coherent software systems with components operating on
differing computers, programmers need to solve lots of problems. Consider
two examples: data flowing in a stream must be delivered in order, even
if sent by varying routes through interconnected networks, and message
delivery must be incorporated into the all-or-nothing guarantees provided
by transactions. Luckily, application programmers don’t need to solve most
of these problems, because appropriate supporting services are provided by
operating systems and middleware.

I divide my coverage of these services into two chapters. Chapter 9 pro-
vides a foundation regarding networking, so that this book will stand on
its own if you have not previously studied networking. That chapter also
covers services commonly provided by operating systems, or in close conjunc-
tion with operating systems, such as distributed file systems. Chapter 10,
in contrast, explains the higher-level services that middleware provides for
application-to-application communication, in such forms as messaging and
web services. Each chapter introduces example APIs that you can use as an
application programmer, as well as the more general principles behind those
specific APIs.

Networking systems, as I explain in Chapter 9, are generally partitioned
into layers, where each layer makes use of the services provided by the layer
under it in order to provide additional services to the layer above it. At the
bottom of the stack is the physical layer, concerned with such matters as
copper, fiber optics, radio waves, voltages, and wavelengths. Above that is
the link layer, which provides the service of transmitting a chunk of data to
another computer on the same local network. This is the point where the op-
erating system becomes involved. Building on the link-layer foundation, the
operating system provides the services of the network layer and the transport
layer. The network layer arranges for data to be relayed through intercon-
nected networks so as to arrive at a computer that may be elsewhere in the
world. The transport layer builds on top of this basic computer-to-computer
data transmission to provide more useful application-to-application commu-
nication channels. For example, the transport layer typically uses sequence
numbering and retransmission to provide applications the service of in-order,
loss-free delivery of streams of data. This is the level of the most common
operating system API, which provides sockets, that is, endpoints for these
transport-layer connections.

The next layer up is the application layer. A few specialized application-
layer services, such as distributed file systems, are integrated with operating
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systems. However, most application-layer software, such as web browsers
and email programs, is written by application programmers. These applica-
tions can be built directly on an operating system’s socket API and exchange
streams of bytes that comply with standardized protocols. In Chapter 9, I
illustrate this possibility by showing how web browsers and web servers
communicate.

Alternatively, programmers of distributed applications can make use of
middleware to work at a higher level than sending bytes over sockets. I show
two basic approaches to this in Chapter 10: messaging and Remote Proce-
dure Calls (RPCs). Web services are a particular approach to standardizing
these kinds of higher-level application communication, and have often been
used with RPCs.

In a messaging system, an application program requests the delivery of a
message. The messaging system not only delivers the message, which lower-
level networking could accomplish, but also provides additional services. For
example, the messaging is often integrated with transaction processing. A
successful transaction may retrieve a message from an incoming message
queue, update a database in response to that message, and send a response
message to an outgoing queue. If the transaction fails, none of these three
changes will happen; the request message will remain in the incoming queue,
the database will remain unchanged, and the response message will not be
queued for further delivery. Another common service provided by messag-
ing systems is to deliver a message to any number of recipients who have
subscribed to receive messages of a particular kind; the sender need not be
aware of who the actual receivers are.

Middleware can also provide a mechanism for Remote Procedure Call
(RPC ), in which communication between a client and a server is made to
look like an ordinary programming language procedure call, such as invoking
a method on an object. The only difference is that the object in question is
located on a different computer, and so the call and return involve network
communication. The middleware hides this complexity, so that the applica-
tion programmer can work largely as though all the objects were local. In
Chapter 10, I explain this concept more fully and mention that it is often
used in the form of web services. A web service is an application-layer entity
that programs can communicate with using standardized protocols similar
to those humans use to browse the web.
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1.9 Security

Operating systems and middleware are often the targets of attacks by ad-
versaries trying to defeat system security. Even attacks aimed at application
programs often relate to operating systems and middleware. In particular,
easily misused features of operating systems and middleware can be the
root cause of an application-level vulnerability. On the other hand, operat-
ing systems and middleware provide many features that can be very helpful
in constructing secure systems.

A system is secure if it provides an acceptably low risk that an adversary
will prevent the system from achieving its owner’s objectives. In Chapter 11,
I explain in more detail how to think about risk and about the conflicting
objectives of system owners and adversaries. In particular, I explain that
some of the most common objectives for owners fall into four categories:
confidentiality, integrity, availability, and accountability. A system provides
confidentiality if it prevents inappropriate disclosure of information, integrity
if it prevents inappropriate modification or destruction of information, and
availability if it prevents inappropriate interference with legitimate usage. A
system provides accountability if it provides ways to check how authorized
users have exercised their authority. All of these rely on authentication, the
ability of a system to verify the identity of a user.

Many people have a narrow view of system security. They think of those
features that would not even exist, were it not for security issues. Clearly,
logging in with a password (or some other, better form of authentication) is
a component of system security. Equally clearly, having permission to read
some files, but not others, is a component of system security, as are crypto-
graphic protocols used to protect network communication from interception.
However, this view of security is dangerously incomplete.

You need to keep in mind that the design of any component of the
operating system can have security consequences. Even those parts whose
design is dominated by other considerations must also reflect some proactive
consideration of security consequences, or the overall system will be insecure.
In fact, this is an important principle that extends beyond the operating
system to include application software and the humans who operate it.

Therefore, I will make a habit of addressing security issues in every
chapter, rather than only at the end of the book. Specifically, each chapter
concludes with a section pointing out some of the key security issues asso-
ciated with that chapter’s topic. I also provide a more coherent treatment
of security by concluding the book as a whole with Chapter 11, which is
devoted exclusively to security. That chapter takes a holistic approach to
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security, in which human factors play as important a role as technical ones.

Exercises

1.1 What is the difference between an operating system and middleware?

1.2 What do operating systems and middleware have in common?

1.3 What is the relationship between threads and processes?

1.4 What is one way an operating system might isolate threads from un-
wanted interactions, and what is one way that middleware might do
so?

1.5 What is one way an operating system might provide persistent storage,
and what is one way middleware might do so?

1.6 What is one way an operating system might support network commu-
nication, and what is one way middleware might do so?

1.7 Of all the topics previewed in this chapter, which one are you most
looking forward to learning more about? Why?

Programming Project

1.1 Write, test, and debug a program in the language of your choice to
carry out any task you choose. Then write a list of all the services
you suspect the operating system is providing in order to support the
execution of your sample program. If you think the program is also
relying on any middleware services, list those as well.

Exploration Projects

1.1 Look through the titles of the papers presented at several recent con-
ferences hosted by the USENIX Association (The Advanced Comput-
ing Systems Association); you can find the conference proceedings at
www.usenix.org. To get a better idea what an individual paper is
about, click the title to show the abstract, which is a short summary
of the paper. Based on titles and abstracts, pick out a few papers that
you think would make interesting supplementary reading as you work
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your way through this book. Write down a list showing the biblio-
graphic information for the papers you selected and, as near as you
can estimate, where in this book’s table of contents they would be
appropriate to read.

1.2 Conduct a simple experiment in which you take some action on a
computer system and observe what the response is. You can choose
any action you wish and any computer system for which you have
appropriate access. You can either observe a quantitative result, such
as how long the response takes or how much output is produced, or
a qualitative result, such as in what form the response arrives. Now,
try replicating the experiment. Do you always get the same result?
Similar ones? Are there any factors that need to be controlled in
order to get results that are at least approximately repeatable? For
example, to get consistent times, do you need to reboot the system
between each trial and prevent other people from using the system?
To get consistent output, do you need to make sure input files are
kept unchanged? If your action involves a physical device, such as a
printer, do you have to control variables such as whether the printer
is stocked with paper? Finally, write up a careful report, in which
you explain both what experiment you tried and what results you
observed. You should explain how repeatable the results proved to be
and what limits there were on the repeatability. You should describe
the hardware and software configuration in enough detail that someone
else could replicate your experiment and would be likely to get similar
results.

Notes

The idea that an operating system should isolate computations from un-
wanted interactions, and yet support desirable interactions, has a long her-
itage. A 1962 paper [38] by Corbató, Daggett, and Daley points out that
“different user programs if simultaneously in core memory may interfere with
each other or the supervisor program so some form of memory protection
mode should be available when operating user programs.” However, that
same paper goes on to say that although “great care went into making each
user independent of the other users . . . it would be a useful extension of the
system if this were not always the case,” so that the computer system could
support group work, such as war games.
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Middleware is not as well-known to the general public as operating sys-
tems are, though commercial information-system developers would be lost
without it. One attempt to introduce middleware to a somewhat broader
audience was Bernstein’s 1996 survey article [17].

The USENIX Association, mentioned in Exploration Project 1.1, is only
one of several very fine professional societies holding conferences related to
the subject matter of this book. The reason why I specifically recommended
looking through their proceedings is that they tend to be particularly ac-
cessible to students. In part this is because USENIX focuses on bringing
practitioners and academics together; thus, the papers generally are prag-
matic without being superficial. The full text is available on their website.



Chapter 2

Threads

2.1 Introduction

Computer programs consist of instructions, and computers carry out se-
quences of computational steps specified by those instructions. We call
each sequence of computational steps that are strung together one after an-
other a thread. The simplest programs to write are single-threaded, with
instructions that should be executed one after another in a single sequence.
However, in Section 2.2, you will learn how to write programs that produce
more than one thread of execution, each an independent sequence of compu-
tational steps, with few if any ordering constraints between the steps in one
thread and those in another. Multiple threads can also come into existence
by running multiple programs, or by running the same program more than
once.

Note the distinction between a program and a thread; the program con-
tains instructions, whereas the thread consists of the execution of those
instructions. Even for single-threaded programs, this distinction matters.
If a program contains a loop, then a very short program could give rise
to a very long thread of execution. Also, running the same program ten
times will give rise to ten threads, all executing one program. Figure 2.1
summarizes how threads arise from programs.

Each thread has a lifetime, extending from the time its first instruc-
tion execution occurs until the time of its last instruction execution. If two
threads have overlapping lifetimes, as illustrated in Figure 2.2, we say they
are concurrent. One of the most fundamental goals of an operating sys-
tem is to allow multiple threads to run concurrently on the same computer.
That is, rather than waiting until the first thread has completed before a

21
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Single-threaded program Multiple single-threaded programs

Multiple runs of one single-threaded programMulti-threaded program

Spawn

Thread Thread A

Thread A

Thread B

Thread B

Thread A

Thread B

Figure 2.1: Programs give rise to threads.

Sequential threads

Concurrent threads running simultaneously on two processors

Concurrent threads (with gaps in their executions) interleaved on one processor

Figure 2.2: Sequential and concurrent threads
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second thread can run, it should be possible to divide the computer’s atten-
tion between them. If the computer hardware includes multiple processors,
then it will naturally be possible to run threads concurrently, one per pro-
cessor. However, the operating system’s users will often want to run more
concurrent threads than the hardware has processors, for reasons described
in Section 2.3. Therefore, the operating system will need to divide each pro-
cessor’s attention between multiple threads. In this introductory textbook
I will mostly limit myself to the case of all the threads needing to be run on
a single processor. I will explicitly indicate those places where I do address
the more general multi-processor case.

In order to make the concept of concurrent threads concrete, Section 2.2
shows how to write a program that spawns multiple threads each time the
program is run. Once you know how to create threads, I will explain in Sec-
tion 2.3 some of the reasons why it is desirable to run multiple threads con-
currently and will offer some typical examples of the uses to which threads
are put.

These first two sections explain the application programmer’s view of
threads: how and why the programmer would use concurrent threads. This
sets us up for the next question: how does the operating system support
the application programmer’s desire for concurrently executing threads? In
Sections 2.4 and 2.5, we will examine how the system does so. In this chap-
ter, we will consider only the fundamentals of how the processor’s attention
is switched from one thread to another. Some of the related issues I address
in other chapters include deciding which thread to run at each point (Chap-
ter 3) and controlling interaction among the threads (Chapters 4, 5, 6, and
7). Also, as explained in Chapter 1, I will wait until Chapter 7 to explain the
protection boundary surrounding the operating system. Thus, I will need
to wait until that chapter to distinguish threads that reside entirely within
that boundary, threads provided from inside the boundary for use outside of
it, and threads residing entirely outside the boundary (known as user-level
threads or, in Microsoft Windows, fibers).

Finally, the chapter concludes with the standard features of this book:
a brief discussion of security issues, followed by exercises, programming and
exploration projects, and notes.

2.2 Example of Multithreaded Programs

Whenever a program initially starts running, the computer carries out the
program’s instructions in a single thread. Therefore, if the program is in-
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tended to run in multiple threads, the original thread needs at some point
to spawn off a child thread that does some actions, while the parent thread
continues to do others. (For more than two threads, the program can repeat
the thread-creation step.) Most programming languages have an application
programming interface (or API) for threads that includes a way to create
a child thread. In this section, I will use the Java API and the API for
C that is called pthreads, for POSIX threads. (As you will see throughout
the book, POSIX is a comprehensive specification for UNIX-like systems,
including many APIs beyond just thread creation.)

Realistic multithreaded programming requires the control of thread in-
teractions, using techniques I show in Chapter 4. Therefore, my examples in
this chapter are quite simple, just enough to show the spawning of threads.

To demonstrate the independence of the two threads, I will have both
the parent and the child thread respond to a timer. One will sleep three
seconds and then print out a message. The other will sleep five seconds and
then print out a message. Because the threads execute concurrently, the
second message will appear approximately two seconds after the first. (In
Programming Projects 2.1, 2.2, and 2.3, you can write a somewhat more
realistic program, where one thread responds to user input and the other to
the timer.)

Figure 2.3 shows the Java version of this program. The main program
first creates a Thread object called childThread. The Runnable object asso-
ciated with the child thread has a run method that sleeps three seconds (ex-
pressed as 3000 milliseconds) and then prints a message. This run method
starts running when the main procedure invokes childThread.start(). Be-
cause the run method is in a separate thread, the main thread can continue
on to the subsequent steps, sleeping five seconds (5000 milliseconds) and
printing its own message.

Figure 2.4 is the equivalent program in C, using the pthreads API. The
child procedure sleeps three seconds and prints a message. The main proce-
dure creates a child_thread running the child procedure, and then itself
sleeps five seconds and prints a message. The most significant difference
from the Java API is that pthread_create both creates the child thread
and starts it running, whereas in Java those are two separate steps.

In addition to portable APIs, such as the Java and pthreads APIs, many
systems provide their own non-portable APIs. For example, Microsoft Win-
dows has the Win32 API, with procedures such as CreateThread and Sleep.
In Programming Project 2.4, you can modify the program from Figure 2.4
to use this API.
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public class Simple2Threads {

public static void main(String args[]){

Thread childThread = new Thread(new Runnable(){

public void run(){

sleep(3000);

System.out.println("Child is done sleeping 3 seconds.");

}

});

childThread.start();

sleep(5000);

System.out.println("Parent is done sleeping 5 seconds.");

}

private static void sleep(int milliseconds){

try{

Thread.sleep(milliseconds);

} catch(InterruptedException e){

// ignore this exception; it won’t happen anyhow

}

}

}

Figure 2.3: A simple multithreaded program in Java
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#include <pthread.h>

#include <unistd.h>

#include <stdio.h>

static void *child(void *ignored){

sleep(3);

printf("Child is done sleeping 3 seconds.\n");

return NULL;

}

int main(int argc, char *argv[]){

pthread_t child_thread;

int code;

code = pthread_create(&child_thread, NULL, child, NULL);

if(code){

fprintf(stderr, "pthread_create failed with code %d\n", code);

}

sleep(5);

printf("Parent is done sleeping 5 seconds.\n");

return 0;

}

Figure 2.4: A simple multithreaded program in C



2.3. REASONS FOR USING CONCURRENT THREADS 27

2.3 Reasons for Using Concurrent Threads

You have now seen how a single execution of one program can result in
more than one thread. Presumably, you were already at least somewhat
familiar with generating multiple threads by running multiple programs, or
by running the same program multiple times. Regardless of how the threads
come into being, we are faced with a question. Why is it desirable for
the computer to execute multiple threads concurrently, rather than waiting
for one to finish before starting another? Fundamentally, most uses for
concurrent threads serve one of two goals:

Responsiveness: allowing the computer system to respond quickly to some-
thing external to the system, such as a human user or another com-
puter system. Even if one thread is in the midst of a long computation,
another thread can respond to the external agent. Our example pro-
grams in Section 2.2 illustrated responsiveness: both the parent and
the child thread responded to a timer.

Resource utilization: keeping most of the hardware resources busy most
of the time. If one thread has no need for a particular piece of hard-
ware, another may be able to make productive use of it.

Each of these two general themes has many variations, some of which we
explore in the remainder of this section. A third reason why programmers
sometimes use concurrent threads is as a tool for modularization. With this,
a complex system may be decomposed into a group of interacting threads.

Let’s start by considering the responsiveness of a web server, which pro-
vides many client computers with the specific web pages they request over
the Internet. Whenever a client computer makes a network connection to
the server, it sends a sequence of bytes that contain the name of the desired
web page. Therefore, before the server program can respond, it needs to
read in those bytes, typically using a loop that continues reading in bytes
from the network connection until it sees the end of the request. Suppose
one of the clients is connecting using a very slow network connection, per-
haps via a dial-up modem. The server may read the first part of the request
and then have to wait a considerable length of time before the rest of the
request arrives over the network. What happens to other clients in the
meantime? It would be unacceptable for a whole website to grind to a halt,
unable to serve any clients, just waiting for one slow client to finish issuing
its request. One way some web servers avoid this unacceptable situation
is by using multiple threads, one for each client connection, so that even if
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one thread is waiting for data from one client, other threads can continue
interacting with the other clients. Figure 2.5 illustrates the unacceptable
single-threaded web server and the more realistic multithreaded one.

On the client side, a web browser may also illustrate the need for re-
sponsiveness. Suppose you start loading in a very large web page, which
takes considerable time to download. Would you be happy if the computer
froze up until the download finished? Probably not. You expect to be able
to work on a spreadsheet in a different window, or scroll through the first
part of the web page to read as much as has already downloaded, or at least
click on the Stop button to give up on the time-consuming download. Each
of these can be handled by having one thread tied up loading the web page
over the network, while another thread is responsive to your actions at the
keyboard and mouse.

This web browser scenario also lets me foreshadow later portions of the
textbook concerning the controlled interaction between threads. Note that
I sketched several different things you might want to do while the web page
downloaded. In the first case, when you work on a spreadsheet, the two
concurrent threads have almost nothing to do with one another, and the op-
erating system’s job, beyond allowing them to run concurrently, will mostly
consist of isolating each from the other, so that a bug in the web browser
doesn’t overwrite part of your spreadsheet, for example. This is gener-
ally done by encapsulating the threads in separate protection environments
known as processes, as we will discuss in Chapters 6 and 7. (Some systems
call processes tasks, while others use task as a synonym for thread.) If, on
the other hand, you continue using the browser’s user interface while the
download continues, the concurrent threads are closely related parts of a

Single-threaded
web server Slow

client

Blocked Other
clients

Multi-threaded
web server Slow

client

Other
clients

Figure 2.5: Single-threaded and multithreaded web servers
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single application, and the operating system need not isolate the threads
from one another. However, it may still need to provide mechanisms for
regulating their interaction. For example, some coordination between the
downloading thread and the user-interface thread is needed to ensure that
you can scroll through as much of the page as has been downloaded, but
no further. This coordination between threads is known as synchronization
and is the topic of Chapters 4 and 5.

Turning to the utilization of hardware resources, the most obvious sce-
nario is when you have a dual-processor computer. In this case, if the system
ran only one thread at a time, only half the processing capacity would ever
be used. Even if the human user of the computer system doesn’t have more
than one task to carry out, there may be useful housekeeping work to keep
the second processor busy. For example, most operating systems, if asked
to allocate memory for an application program’s use, will store all zeros into
the memory first. Rather than holding up each memory allocation while
the zeroing is done, the operating system can have a thread that proac-
tively zeros out unused memory, so that when needed, it will be all ready. If
this housekeeping work (zeroing of memory) were done on demand, it would
slow down the system’s real work; by using a concurrent thread to utilize the
available hardware more fully, the performance is improved. This example
also illustrates that not all threads need to come from user programs. A
thread can be part of the operating system itself, as in the example of the
thread zeroing out unused memory.

Even in a single-processor system, resource utilization considerations
may justify using concurrent threads. Remember that a computer system
contains hardware resources, such as disk drives, other than the processor.
Suppose you have two tasks to complete on your PC: you want to scan all
the files on disk for viruses, and you want to do a complicated photo-realistic
rendering of a three-dimensional scene including not only solid objects, but
also shadows cast on partially transparent smoke clouds. From experience,
you know that each of these will take about an hour. If you do one and then
the other, it will take two hours. If instead you do the two concurrently—
running the virus scanner in one window while you run the graphics render-
ing program in another window—you may be pleasantly surprised to find
both jobs done in only an hour and a half.

The explanation for the half-hour savings in elapsed time is that the virus
scanning program spends most of its time using the disk drive to read files,
with only modest bursts of processor activity each time the disk completes a
read request, whereas the rendering program spends most of its time doing
processing, with very little disk activity. As illustrated in Figure 2.6, running
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them in sequence leaves one part of the computer’s hardware idle much of
the time, whereas running the two concurrently keeps the processor and
disk drive both busy, improving the overall system efficiency. Of course,
this assumes the operating system’s scheduler is smart enough to let the
virus scanner have the processor’s attention (briefly) whenever a disk request
completes, rather than making it wait for the rendering program. I will
address this issue in Chapter 3.

As you have now seen, threads can come from multiple sources and
serve multiple roles. They can be internal portions of the operating system,
as in the example of zeroing out memory, or part of the user’s application
software. In the latter case, they can either be dividing up the work within a
multithreaded process, such as the web server and web browser examples, or
can come from multiple independent processes, as when a web browser runs
in one window and a spreadsheet in another. Regardless of these variations,
the typical reasons for running the threads concurrently remain unchanged:
either to provide increased responsiveness or to improve system efficiency by
more fully utilizing the hardware. Moreover, the basic mechanism used to
divide the processor’s attention among multiple threads remains the same
in these different cases as well; I describe that mechanism in Sections 2.4
and 2.5. Of course, some cases require the additional protection mechanisms
provided by processes, which we discuss in Chapters 6 and 7. However, even
then, it is still necessary to leave off work on one thread and pick up work
on another.

2.4 Switching Between Threads

In order for the operating system to have more than one thread underway
on a processor, the system needs to have some mechanism for switching
attention between threads. In particular, there needs to be some way to
leave off from in the middle of a thread’s sequence of instructions, work for
a while on other threads, and then pick back up in the original thread right
where it left off. In order to explain thread switching as simply as possible, I
will initially assume that each thread is executing code that contains, every
once in a while, explicit instructions to temporarily switch to another thread.
Once you understand this mechanism, I can then build on it for the more
realistic case where the thread contains no explicit thread-switching points,
but rather is automatically interrupted for thread switches.

Suppose we have two threads, A and B, and we use A1, A2, A3, and
so forth as names for the instruction execution steps that constitute A, and
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Figure 2.6: Overlapping processor-intensive and disk-intensive activities

similarly for B. In this case, one possible execution sequence might be as
shown in Figure 2.7. As I will explain subsequently, when thread A executes
switchFromTo(A,B) the computer starts executing instructions from thread
B. In a more realistic example, there might be more than two threads, and
each might run for many more steps (both between switches and overall),
with only occasionally a new thread starting or an existing thread exiting.

Our goal is that the steps of each thread form a coherent execution
sequence. That is, from the perspective of thread A, its execution should not
be much different from one in which A1 through A8 occurred consecutively,
without interruption, and similarly for thread B’s steps B1 through B9.
Suppose, for example, steps A1 and A2 load two values from memory into
registers, A3 adds them, placing the sum in a register, and A4 doubles that
register’s contents, so as to get twice the sum. In this case, we want to
make sure that A4 really does double the sum computed by A1 through A3,
rather than doubling some other value that thread B’s steps B1 through
B3 happen to store in the same register. Thus, we can see that switching
threads cannot simply be a matter of a jump instruction transferring control
to the appropriate instruction in the other thread. At a minimum, we will
also have to save registers into memory and restore them from there, so
that when a thread resumes execution, its own values will be back in the
registers.

In order to focus on the essentials, let’s put aside the issue of how threads
start and exit. Instead, let’s focus just on the normal case where one thread
in progress puts itself on hold and switches to another thread where that
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Figure 2.7: Switching between threads
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other thread last left off, such as the switch from A5 to B4 in the preceding
example. To support switching threads, the operating system will need
to keep information about each thread, such as at what point that thread
should resume execution. If this information is stored in a block of memory
for each thread, then we can use the addresses of those memory areas to
refer to the threads. The block of memory containing information about a
thread is called a thread control block or task control block (TCB). Thus,
another way of saying that we use the addresses of these blocks is to say
that we use pointers to thread control blocks to refer to threads.

Our fundamental thread-switching mechanism will be the switchFromTo
procedure, which takes two of these thread control block pointers as param-
eters: one specifying the thread that is being switched out of, and one
specifying the next thread, which is being switched into. In our running
example, A and B are pointer variables pointing to the two threads’ control
blocks, which we use alternately in the roles of outgoing thread and next
thread. For example, the program for thread A contains code after instruc-
tion A5 to switch from A to B, and the program for thread B contains code
after instruction B3 to switch from B to A. Of course, this assumes that each
thread knows both its own identity and the identity of the thread to switch
to. Later, we will see how this unrealistic assumption can be eliminated.
For now, though, let’s see how we could write the switchFromTo procedure
so that switchFromTo(A, B) would save the current execution status in-
formation into the structure pointed to by A, read back previously saved
information from the structure pointed to by B, and resume where thread B
left off.

We already saw that the execution status information to save includes
not only a position in the program, often called the program counter (PC ) or
instruction pointer (IP), but also the contents of registers. Another critical
part of the execution status for programs compiled with most higher level
language compilers is a portion of the memory used to store a stack, along
with a stack pointer register that indicates the position in memory of the
current top of the stack. You likely have encountered this form of storage in
some prior course—computer organization, programming language princi-
ples, or even introduction to computer science. If not, Appendix A provides
the information you will need before proceeding with the remainder of this
chapter.

When a thread resumes execution, it must find the stack the way it left
it. For example, suppose thread A pushes two items on the stack and then
is put on hold for a while, during which thread B executes. When thread A
resumes execution, it should find the two items it pushed at the top of the



34 CHAPTER 2. THREADS

stack—even if thread B did some pushing of its own and has not yet gotten
around to popping. We can arrange for this by giving each thread its own
stack, setting aside a separate portion of memory for each of them. When
thread A is executing, the stack pointer (or SP register) will be pointing
somewhere within thread A’s stack area, indicating how much of that area
is occupied at that time. Upon switching to thread B, we need to save away
A’s stack pointer, just like other registers, and load in thread B’s stack
pointer. That way, while thread B is executing, the stack pointer will move
up and down within B’s stack area, in accordance with B’s own pushes and
pops.

Having discovered this need to have separate stacks and switch stack
pointers, we can simplify the saving of all other registers by pushing them
onto the stack before switching and popping them off the stack after switch-
ing, as shown in Figure 2.8. We can use this approach to outline the code
for switching from the outgoing thread to the next thread, using outgoing

and next as the two pointers to thread control blocks. (When switching
from A to B, outgoing will be A and next will be B. Later, when switch-
ing back from B to A, outgoing will be B and next will be A.) We will use
outgoing->SP and outgoing->IP to refer to two slots within the structure
pointed to by outgoing, the slot used to save the stack pointer and the one
used to save the instruction pointer. With these assumptions, our code has
the following general form:

push each register on the (outgoing thread’s) stack

store the stack pointer into outgoing->SP

load the stack pointer from next->SP

store label L’s address into outgoing->IP

load in next->IP and jump to that address

L:

pop each register from the (resumed outgoing thread’s) stack

Note that the code before the label (L) is done at the time of switching
away from the outgoing thread, whereas the code after that label is done
later, upon resuming execution when some other thread switches back to
the original one.

This code not only stores the outgoing thread’s stack pointer away, but
also restores the next thread’s stack pointer. Later, the same code will be
used to switch back. Therefore, we can count on the original thread’s stack
pointer to have been restored when control jumps to label L. Thus, when the
registers are popped, they will be popped from the original thread’s stack,
matching the pushes at the beginning of the code.
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Figure 2.8: Saving registers in thread control blocks and per-thread stacks

We can see how this general pattern plays out in a real system, by looking
at the thread-switching code from the Linux operating system for the i386
architecture. (The i386 architecture is also known as the x86 or IA-32;
it is a popular processor architecture used in standard personal computer
processors such as Intel’s Core, Xeon, and Atom families and AMD’s FX
and Opteron families.) If you don’t want to see real code, you can skip
ahead to the paragraph after the block of assembly code. However, even if
you aren’t familiar with i386 assembly language, you ought to be able to see
how this code matches the preceding pattern.

This is real code extracted from the Linux kernel, though with some
peripheral complications left out. The stack pointer register is named %esp,
and when this code starts running, the registers known as %ebx and %esi

contain the outgoing and next pointers, respectively. Each of those pointers
is the address of a thread control block. The location at offset 812 within
the TCB contains the thread’s instruction pointer, and the location at offset
816 contains the thread’s stack pointer. (That is, these memory locations
contain the instruction pointer and stack pointer to use when resuming that
thread’s execution.) The code surrounding the thread switch does not keep
any important values in most of the other registers; only the special flags
register and the register named %ebp need to be saved and restored. With
that as background, here is the code, with explanatory comments:

pushfl # pushes the flags on outgoing’s stack

pushl %ebp # pushes %ebp on outgoing’s stack
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movl %esp,816(%ebx) # stores outgoing’s stack pointer

movl 816(%esi),%esp # loads next’s stack pointer

movl $1f,812(%ebx) # stores label 1’s address,

# where outgoing will resume

pushl 812(%esi) # pushes the instruction address

# where next resumes

ret # pops and jumps to that address

1: popl %ebp # upon later resuming outgoing,

# restores %ebp

popfl # and restores the flags

Having seen the core idea of how a processor is switched from running
one thread to running another, we can now eliminate the assumption that
each thread switch contains the explicit names of the outgoing and next
threads. That is, we want to get away from having to name threads A

and B in switchFromTo(A, B). It is easy enough to know which thread is
being switched away from, if we just keep track at all times of the currently
running thread, for example, by storing a pointer to its control block in a
global variable called current. That leaves the question of which thread is
being selected to run next. What we will do is have the operating system
keep track of all the threads in some sort of data structure, such as a list.
There will be a procedure, chooseNextThread(), which consults that data
structure and, using some scheduling policy, decides which thread to run
next. In Chapter 3, I will explain how this scheduling is done; for now, take
it as a black box. Using this tool, one can write a procedure, yield(), which
performs the following four steps:

outgoing = current;

next = chooseNextThread();

current = next; // so the global variable will be right

switchFromTo(outgoing, next);

Now, every time a thread decides it wants to take a break and let other
threads run for a while, it can just invoke yield(). This is essentially
the approach taken by real systems, such as Linux. One complication in a
multiprocessor system is that the current thread needs to be recorded on
a per-processor basis.

Thread switching is often called context switching, because it switches
from the execution context of one thread to that of another thread. Many
authors, however, use the phrase context switching differently, to refer to
switching processes with their protection contexts—a topic we will discuss
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in Chapter 7. If the distinction matters, the clearest choice is to avoid the
ambiguous term context switching and use the more specific thread switching
or process switching.

Thread switching is the most common form of dispatching a thread,
that is, of causing a processor to execute it. The only way a thread can be
dispatched without a thread switch is if a processor is idle.

2.5 Preemptive Multitasking

At this point, I have explained thread switching well enough for systems
that employ cooperative multitasking, that is, where each thread’s program
contains explicit code at each point where a thread switch should occur.
However, more realistic operating systems use what is called preemptive mul-
titasking, in which the program’s code need not contain any thread switches,
yet thread switches will none the less automatically be performed from time
to time.

One reason to prefer preemptive multitasking is because it means that
buggy code in one thread cannot hold all others up. Consider, for example,
a loop that is expected to iterate only a few times; it would seem safe, in
a cooperative multitasking system, to put thread switches only before and
after it, rather than also in the loop body. However, a bug could easily turn
the loop into an infinite one, which would hog the processor forever. With
preemptive multitasking, the thread may still run forever, but at least from
time to time it will be put on hold and other threads allowed to progress.

Another reason to prefer preemptive multitasking is that it allows thread
switches to be performed when they best achieve the goals of responsiveness
and resource utilization. For example, the operating system can preempt a
thread when input becomes available for a waiting thread or when a hard-
ware device falls idle.

Even with preemptive multitasking, it may occasionally be useful for a
thread to voluntarily give way to the other threads, rather than to run as
long as it is allowed. Therefore, even preemptive systems normally provide
yield(). The name varies depending on the API, but often has yield

in it; for example, the pthreads API uses the name sched_yield(). One
exception to this naming pattern is the Win32 API of Microsoft Windows,
which uses the name SwitchToThread() for the equivalent of yield().

Preemptive multitasking does not need any fundamentally different thread
switching mechanism; it simply needs the addition of a hardware interrupt
mechanism. In case you are not familiar with how interrupts work, I will
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first take a moment to review this aspect of hardware organization.
Normally a processor will execute consecutive instructions one after an-

other, deviating from sequential flow only when directed by an explicit jump
instruction or by some variant such as the ret instruction used in the Linux
code for thread switching. However, there is always some mechanism by
which external hardware (such as a disk drive or a network interface) can
signal that it needs attention. A hardware timer can also be set to demand
attention periodically, such as every millisecond. When an I/O device or
timer needs attention, an interrupt occurs, which is almost as though a
procedure call instruction were forcibly inserted between the currently ex-
ecuting instruction and the next one. Thus, rather than moving on to the
program’s next instruction, the processor jumps off to the special procedure
called the interrupt handler.

The interrupt handler, which is part of the operating system, deals with
the hardware device and then executes a return from interrupt instruction,
which jumps back to the instruction that had been about to execute when
the interrupt occurred. Of course, in order for the program’s execution to
continue as expected, the interrupt handler needs to be careful to save all
the registers at the start and restore them before returning.

Using this interrupt mechanism, an operating system can provide pre-
emptive multitasking. When an interrupt occurs, the interrupt handler first
saves the registers to the current thread’s stack and takes care of the imme-
diate needs, such as accepting data from a network interface controller or
updating the system’s idea of the current time by one millisecond. Then,
rather than simply restoring the registers and executing a return from inter-
rupt instruction, the interrupt handler checks whether it would be a good
time to preempt the current thread and switch to another.

For example, if the interrupt signaled the arrival of data for which a
thread had long been waiting, it might make sense to switch to that thread.
Or, if the interrupt was from the timer and the current thread had been
executing for a long time, it may make sense to give another thread a chance.
These policy decisions are related to scheduling, the topic of Chapter 3.

In any case, if the operating system decides to preempt the current
thread, the interrupt handler switches threads using a mechanism such as
the switchFromTo procedure. This switching of threads includes switching
to the new thread’s stack, so when the interrupt handler restores registers
before returning, it will be restoring the new thread’s registers. The pre-
viously running thread’s register values will remain safely on its own stack
until that thread is resumed.
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2.6 Security and Threads

One premise of this book is that every topic raises its own security issues.
Multithreading is no exception. However, this section will be quite brief,
because with the material covered in this chapter, I can present only the
security problems connected with multithreading, not the solutions. So that
I do not divide problems from their solutions, this section provides only a
thumbnail sketch, leaving serious consideration of the problems and their
solutions to the chapters that introduce the necessary tools.

Security issues arise when some threads are unable to execute because
others are hogging the computer’s attention. Security issues also arise be-
cause of unwanted interactions between threads. Unwanted interactions
include a thread writing into storage that another thread is trying to use or
reading from storage another thread considers confidential. These problems
are most likely to arise if the programmer has a difficult time understanding
how the threads may interact with one another.

The security section in Chapter 3 addresses the problem of some threads
monopolizing the computer. The security sections in Chapters 4, 5, and 7
address the problem of controlling threads’ interaction. Each of these chap-
ters also has a strong emphasis on design approaches that make interactions
easy to understand, thereby minimizing the risks that arise from incomplete
understanding.

Exercises

2.1 Based on the examples in Section 2.2, name at least one difference be-
tween the sleep procedure in the POSIX API and the Thread.sleep

method in the Java API.

2.2 Give at least three more examples, beyond those given in the text,
where it would be useful to run more concurrent threads on a com-
puter than that computer’s number of processors. Indicate how your
examples fit the general reasons to use concurrency listed in the text.

2.3 Suppose thread A goes through a loop 100 times, each time performing
(i) one disk I/O operation, taking 10 milliseconds, and then (ii) some
computation, taking 1 millisecond. While each 10-millisecond disk op-
eration is in progress, thread A cannot make any use of the processor.
Thread B runs for 1 second, purely in the processor, with no I/O. One
millisecond of processor time is spent each time the processor switches
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threads; other than this switching cost, there is no problem with the
processor working on thread B during one of thread A’s I/O opera-
tions. (The processor and disk drive do not contend for memory access
bandwidth, for example.)

(a) Suppose the processor and disk work purely on thread A until
its completion, and then the processor switches to thread B and
runs all of that thread. What will the total elapsed time be?

(b) Suppose the processor starts out working on thread A, but every
time thread A performs a disk operation, the processor switches
to B during the operation and then back to A upon the disk
operation’s completion. What will the total elapsed time be?

2.4 Consider a uniprocessor system where each arrival of input from an
external source triggers the creation and execution of a new thread,
which at its completion produces some output. We are interested in
the response time from triggering input to resulting output.

(a) Input arrives at time 0 and again after 1 second, 2 seconds, and
so forth. Each arrival triggers a thread that takes 600 millisec-
onds to run. Before the thread can run, it must be created and
dispatched, which takes 10 milliseconds. What is the average
response time for these inputs?

(b) Now a second source of input is added, with input arriving at
times 0.1 seconds, 1.1 seconds, 2.1 seconds, and so forth. These
inputs trigger threads that only take 100 milliseconds to run, but
they still need 10 milliseconds to create and dispatch. When
an input arrives, the resulting new thread is not created or dis-
patched until the processor is idle. What is the average response
time for this second class of inputs? What is the combined aver-
age response time for the two classes?

(c) Suppose we change the way the second class of input is handled.
When the input arrives, the new thread is immediately created
and dispatched, even if that preempts an already running thread.
When the new thread completes, the preempted thread resumes
execution after a 1 millisecond thread switching delay. What is
the average response time for each class of inputs? What is the
combined average for the two together?

2.5 When control switches away from a thread and later switches back
to that thread, the thread resumes execution where it left off. Simi-
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larly, when a procedure calls a subroutine and later the subroutine re-
turns, execution picks back up where it left off in the calling procedure.
Given this similarity, what is the essential difference between thread
switching and subroutine call/return? You saw that each thread has
a separate stack, each in its own area of memory. Why is this not
necessary for subroutine invocations?

Programming Projects

2.1 If you program in C, read the documentation for pthread_cancel. Us-
ing this information and the model provided in Figure 2.4 on page 26,
write a program where the initial (main) thread creates a second
thread. The main thread should read input from the keyboard, wait-
ing until the user presses the Enter key. At that point, it should kill
off the second thread and print out a message reporting that it has
done so. Meanwhile, the second thread should be in an infinite loop,
each time around sleeping five seconds and then printing out a mes-
sage. Try running your program. Can the sleeping thread print its
periodic messages while the main thread is waiting for keyboard in-
put? Can the main thread read input, kill the sleeping thread, and
print a message while the sleeping thread is in the early part of one of
its five-second sleeps?

2.2 If you program in Java, read the documentation for the stop method in
the Thread class. (Ignore the information about it being deprecated.
That will make sense only after you read Chapter 4 of this book.)
Write the program described in Programming Project 2.1, except do
so in Java. You can use the program shown in Figure 2.3 on page 25
as a model.

2.3 Read the API documentation for some programming language other
than C, C++, or Java to find out how to spawn off a thread and how
to sleep. Write a program in this language equivalent to the Java
and C example programs in Figures 2.3 and 2.4 on pages 25 and 26.
Then do the equivalent of Programming Projects 2.1 and 2.2 using the
language you have chosen.

2.4 If you program in C under Microsoft Windows, you can use the native
Win32 API instead of the portable pthreads API. Read the docu-
mentation of CreateThread and Sleep and modify the program of
Figure 2.4 on page 26 to use these procedures.
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Exploration Projects

2.1 Try the experiment of running a disk-intensive process and a processor-
intensive process concurrently. Write a report carefully explaining
what you did and in which hardware and software system context you
did it, so that someone else could replicate your results. Your report
should show how the elapsed time for the concurrent execution com-
pared with the times from sequential execution. Be sure to do multiple
trials and to reboot the system before each run so as to eliminate ef-
fects that come from keeping disk data in memory for re-use. If you
can find documentation for any performance-monitoring tools on your
system, which would provide information such as the percentage of
CPU time used or the number of disk I/O operations per second, you
can include this information in your report as well.

2.2 Early versions of Microsoft Windows and Mac OS used cooperative
multitasking. Use the web, or other sources of information, to find out
when each switched to preemptive multitasking. Can you find and
summarize any examples of what was written about this change at
the time?

2.3 How frequently does a system switch threads? You can find this out
on a Linux system by using the vmstat program. Read the man page
for vmstat, and then run it to find the number of context switches per
second. Write a report in which you carefully explain what you did
and the hardware and software system context in which you did it, so
that someone else could replicate your results.

Notes

The idea of executing multiple threads concurrently seems to have occurred
to several people (more or less concurrently) in the late 1950s. They did not
use the word thread, however. For example, a 1959 article by E. F. Codd
et al. [34] stated that “the second form of parallelism, which we shall call
nonlocal, provides for concurrent execution of instructions which need not
be neighbors in an instruction stream, but which may belong, if you please,
to entirely separate and unrelated programs.” From the beginning, authors
were aware of both reasons for using concurrency that I have emphasized
(resource utilization and responsiveness). The same article by Codd et al.,
for example, reports that “one object of concurrently running tasks which
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belong to different (perhaps totally unrelated) programs is to achieve a more
balanced loading of the facilities than would be possible if all the tasks
belonged to a single program. Another object is to achieve a specified real-
time response in a situation in which messages, transactions, etc., are to be
processed on-line.”

I mentioned that an operating system may dedicate a thread to preemp-
tively zeroing out memory. One example of this is the zero page thread in
Microsoft Windows. See Russinovich and Solomon’s book [126] for details.

I extracted the Linux thread switching code from version 2.6.0-test1 of
the kernel. Details (such as the offsets 812 and 816) may differ in other
versions. The kernel source code is written in a combination of assembly
language and C, contained in include/asm-i386/system.h as included into
kernel/sched.c. To obtain pure assembly code, I fed the source through
the gcc compiler. Also, the ret instruction is a simplification; the actual
kernel at that point jumps to a block of code that ends with the ret in-
struction.

My brief descriptions of the POSIX and Java APIs are intended only as
concrete illustrations of broader concepts, not as a replacement for documen-
tation of those APIs. You can find the official documentation on the web at
http:// opengroup.org/ unix and http:// www.oracle.com/ technetwork/ java/
index.html , respectively.

http://opengroup.org/unix
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
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Chapter 3

Scheduling

3.1 Introduction

In Chapter 2 you saw that operating systems support the concurrent execu-
tion of multiple threads by repeatedly switching each processor’s attention
from one thread to another. This switching implies that some mechanism,
known as a scheduler, is needed to choose which thread to run at each time.
Other system resources may need scheduling as well; for example, if several
threads read from the same disk drive, a disk scheduler may place them in
order. For simplicity, I will consider only processor scheduling. Normally,
when people speak of scheduling, they mean processor scheduling; similarly,
the scheduler is understood to mean the processor scheduler.

A scheduler should make decisions in a way that keeps the computer
system’s users happy. For example, picking the same thread all the time
and completely ignoring the others would generally not be a good scheduling
policy. Unfortunately, there is no one policy that will make all users happy
all the time. Sometimes the reason is as simple as different users having
conflicting desires: for example, user A wants task A completed quickly,
while user B wants task B completed quickly. Other times, though, the
relative merits of different scheduling policies will depend not on whom you
ask, but rather on the context in which you ask. As a simple example, a
student enrolled in several courses is unlikely to decide which assignment to
work on without considering when the assignments are due.

Because scheduling policies need to respond to context, operating sys-
tems provide scheduling mechanisms that leave the user in charge of more
subtle policy choices. For example, an operating system may provide a
mechanism for running whichever thread has the highest numerical priority,

45
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while leaving the user the job of assigning priorities to the threads. Even so,
no one mechanism (or general family of policies) will suit all goals. There-
fore, I spend much of this chapter describing the different goals that users
have for schedulers and the mechanisms that can be used to achieve those
goals, at least approximately. Particularly since users may wish to achieve
several conflicting goals, they will generally have to be satisfied with “good
enough.”

Before I get into the heavily values-laden scheduling issues, though, I
will present one goal everyone can agree upon: A thread that can make
productive use of a processor should always be preferred over one that is
waiting for something, such as the completion of a time delay or the arrival
of input. In Section 3.2, you will see how schedulers arrange for this by
keeping track of each thread’s state and scheduling only those that can run
usefully.

Following the section on thread states, I devote Section 3.3 entirely to the
question of users’ goals, independent of how they are realized. Then I spend
one section apiece on three broad families of schedulers, examining for each
not only how it works but also how it can serve users’ goals. These three
families of schedulers are those based on fixed thread priorities (Section 3.4),
those based on dynamically adjusted thread priorities (Section 3.5), and
those based less on priorities than on controlling each thread’s proportional
share of processing time (Section 3.6). This three-way division is not the
only possible taxonomy of schedulers, but it will serve to help me introduce
several operating systems’ schedulers and explain the principles behind them
while keeping in mind the context of users’ goals. After presenting the
three families of schedulers, I will briefly remark in Section 3.7 on the role
scheduling plays in system security. The chapter concludes with exercises,
programming and exploration projects, and notes.

3.2 Thread States

A typical thread will have times when it is waiting for some event, unable
to execute any useful instructions until the event occurs. Consider a web
server that reads a client’s request from the network, reads the requested
web page from disk, and then sends the page over the network to the client.
Initially the server thread is waiting for the network interface to have some
data available. If the server thread were scheduled on a processor while it
was waiting, the best it could do would be to execute a loop that checked
over and over whether any data has arrived—hardly a productive use of the
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processor’s time. Once data is available from the network, the server thread
can execute some useful instructions to read the bytes in and check whether
the request is complete. If not, the server needs to go back to waiting for
more data to arrive. Once the request is complete, the server will know
what page to load from disk and can issue the appropriate request to the
disk drive. At that point, the thread once again needs to wait until such
time as the disk has completed the requisite physical movements to locate
the page. To take a different example, a video display program may display
one frame of video and then wait some fraction of a second before displaying
the next so that the movie doesn’t play too fast. All the thread could do
between frames would be to keep checking the computer’s real-time clock
to see whether enough time had elapsed—again, not a productive use of the
processor.

In a single-thread system, it is plausible to wait by executing a loop
that continually checks for the event in question. This approach is known as
busy waiting. However, a modern general-purpose operating system will have
multiple threads competing for the processor. In this case, busy waiting is a
bad idea because any time that the scheduler allocates to the busy-waiting
thread is lost to the other threads without achieving any added value for
the thread that is waiting.

Therefore, operating systems provide an alternative way for threads to
wait. The operating system keeps track of which threads can usefully run
and which are waiting. The system does this by storing runnable threads in
a data structure called the run queue and waiting threads in wait queues,
one per reason for waiting. Although these structures are conventionally
called queues, they may not be used in the first-in, first-out style of true
queues. For example, there may be a list of threads waiting for time to
elapse, kept in order of the desired time. Another example of a wait queue
would be a set of threads waiting for the availability of data on a particular
network communication channel.

Rather than executing a busy-waiting loop, a thread that wants to wait
for some event notifies the operating system of this intention. The operating
system removes the thread from the run queue and inserts the thread into
the appropriate wait queue, as shown in Figure 3.1. Because the scheduler
considers only threads in the run queue for execution, it will never select
the waiting thread to run. The scheduler will be choosing only from those
threads that can make progress if given a processor on which to run.

In Chapter 2, I mentioned that the arrival of a hardware interrupt can
cause the processor to temporarily stop executing instructions from the cur-
rent thread and to start executing instructions from the operating system’s
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Run queue Wait queue

Originally running thread,
needs to wait

Run queue Wait queue

Newly selected
to run

Newly waiting

Figure 3.1: When a thread needs to wait, the operating system moves it
from the run queue to a wait queue. The scheduler selects one of the threads
remaining in the run queue to dispatch, so it starts running. An animated
GIF version of this figure is also available on this book’s web site.
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interrupt handler. One of the services this interrupt handler can perform
is determining that a waiting thread doesn’t need to wait any longer. For
example, the computer’s real-time clock may be configured to interrupt the
processor every one hundredth of a second. The interrupt handler could
check the first thread in the wait queue of threads that are waiting for spe-
cific times to elapse. If the time this thread was waiting for has not yet
arrived, no further threads need to be checked because the threads are kept
in time order. If, on the other hand, the thread has slept as long as it re-
quested, then the operating system can move it out of the list of sleeping
threads and into the run queue, where the thread is available for scheduling.
In this case, the operating system should check the next thread similarly, as
illustrated in Figure 3.2.

Putting together the preceding information, there are at least three dis-
tinct states a thread can be in:

• Runnable (but not running), awaiting dispatch by the scheduler

• Running on a processor

• Waiting for some event

Some operating systems may add a few more states in order to make finer
distinctions (waiting for one kind of event versus waiting for another kind)
or to handle special circumstances (for example, a thread that has finished
running, but needs to be kept around until another thread is notified). For
simplicity, I will stick to the three basic states in the foregoing list. At
critical moments in the thread’s lifetime, the operating system will change
the thread’s state. These thread state changes are indicated in Figure 3.3.
Again, a real operating system may add a few additional transitions; for
example, it may be possible to forcibly terminate a thread, even while it is
in a waiting state, rather than having it terminate only of its own accord
while running.

3.3 Scheduling Goals

Users expect a scheduler to maximize the computer system’s performance
and to allow them to exert control. Each of these goals can be refined into
several more precise goals, which I explain in the following subsections. High
performance may mean high throughput (Section 3.3.1) or fast response
time (Section 3.3.2), and user control may be expressed in terms of urgency,
importance, or resource allocation (Section 3.3.3).
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move

Present,
move
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even
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Figure 3.2: When the operating system handles a timer interrupt, all threads
waiting for times that have now past are moved to the run queue. Because
the wait queue is kept in time order, the scheduler need only check threads
until it finds one waiting for a time still in the future. In this figure, times
are shown on a human scale for ease of understanding. An animated GIF
version of this figure is also available on this book’s web site.

Runnable
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yield or preemption

dispatch

waitevent
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Initiation

Figure 3.3: Threads change states as shown here. When a thread is ini-
tially created, it is runnable, but not actually running on a processor until
dispatched by the scheduler. A running thread can voluntarily yield the
processor or can be preempted by the scheduler in order to run another
thread. In either case, the formerly running thread returns to the runnable
state. Alternatively, a running thread may wait for an external event before
becoming runnable again. A running thread may also terminate.
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3.3.1 Throughput

Many personal computers have far more processing capability available than
work to do, and they largely sit idle, patiently waiting for the next keystroke
from a user. However, if you look behind the scenes at a large Internet
service, such as Google, you’ll see a very different situation. Large rooms
filled with rack after rack of computers are necessary in order to keep up
with the pace of incoming requests; any one computer can cope only with
a small fraction of the traffic. For economic reasons, the service provider
wants to keep the cluster of servers as small as possible. Therefore, the
throughput of each server must be as high as possible. The throughput is the
rate at which useful work, such as search transactions, is accomplished. An
example measure of throughput would be the number of search transactions
completed per second.

Maximizing throughput certainly implies that the scheduler should give
each processor a runnable thread on which to work, if at all possible. How-
ever, there are some other, slightly less obvious, implications as well. Re-
member that a computer system has more components than just processors.
It also has I/O devices (such as disk drives and network interfaces) and
a memory hierarchy, including cache memories. Only by using all these
resources efficiently can a scheduler maximize throughput.

I already mentioned I/O devices in Chapter 2, with the example of a
computationally intensive graphics rendering program running concurrently
with a disk-intensive virus scanner. I will return to this example later in the
current chapter to see one way in which the two threads can be efficiently
interleaved. In a nutshell, the goal is to keep both the processor and the disk
drive busy all the time. If you have ever had an assistant for a project, you
may have some appreciation for what this entails: whenever your assistant
was in danger of falling idle, you had to set your own work aside long enough
to explain the next assignment. Similarly, the processor must switch threads
when necessary to give the disk more work to do.

Cache memories impact throughput-oriented scheduling in two ways,
though one arises only in multiprocessor systems. In any system, switching
between different threads more often than necessary will reduce throughput
because processor time will be wasted on the overhead of context switching,
rather than be available for useful work. The main source of this context-
switching overhead is not the direct cost of the switch itself, which entails
saving a few registers out and loading them with the other thread’s values.
Instead, the big cost is in reduced cache memory performance, for reasons I
will explain in a moment. On multiprocessor systems a second issue arises:
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a thread is likely to run faster when scheduled on the same processor as it
last ran on. Again, this results from cache memory effects. To maximize
throughput, schedulers therefore try to maintain a specific processor affinity
for each thread, that is, to consistently schedule the thread on the same
processor unless there are other countervailing considerations.

You probably learned in a computer organization course that cache mem-
ories provide fast storage for those addresses that have been recently ac-
cessed or that are near to recently accessed locations. Because programs
frequently access the same locations again (that is, exhibit temporal locality)
or access nearby locations (that is, exhibit spatial locality), the processor will
often be able to get its data from the cache rather than from the slower main
memory. Now suppose the processor switches threads. The new thread will
have its own favorite memory locations, which are likely to be quite different.
The cache memory will initially suffer many misses, slowing the processor to
the speed of the main memory, as shown in Figure 3.4. Over time, however,
the new thread’s data will displace the data from the old thread, and the
performance will improve. Suppose that just at the point where the cache
has adapted to the second thread, the scheduler were to decide to switch
back. Clearly this is not a recipe for high-throughput computing.

On a multiprocessor system, processor affinity improves throughput in a
similar manner by reducing the number of cycles the processor stalls waiting
for data from slower parts of the memory hierarchy. Each processor has its
own local cache memory. If a thread resumes running on the same processor
on which it previously ran, there is some hope it will find its data still in
the cache. At worst, the thread will incur cache misses and need to fetch
the data from main memory. The phrase “at worst” may seem odd in the
context of needing to go all the way to main memory, but in a multiprocessor
system, fetching from main memory is not the highest cost situation.

Memory accesses are even more expensive if they refer to data held in
another processor’s cache. That situation can easily arise if the thread is
dispatched on a different processor than it previously ran on, as shown in
Figure 3.5. In this circumstance, the multiprocessor system’s cache coher-
ence protocol comes into play. Typically, this means first transferring the
data from the old cache to the main memory and then transferring it from
the main memory to the new cache. This excess coherence traffic (beyond
what is needed for blocks shared by multiple threads) reduces throughput if
the scheduler has not arranged for processor affinity.
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Figure 3.4: When a processor has been executing thread A for a while, the
cache will mostly hold thread A’s values, and the cache hit rate may be
high. If the processor then switches to thread B, most memory accesses will
miss in the cache and go to the slower main memory.
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Figure 3.5: If processor 1 executes thread A and processor 2 executes thread
B, after a while each cache will hold the corresponding thread’s values. If
the scheduler later schedules each thread on the opposite processor, most
memory accesses will miss in the local cache and need to use the cache
coherence protocol to retrieve data from the other cache.
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3.3.2 Response Time

Other than throughput, the principle measure of a computer system’s per-
formance is response time: the elapsed time from a triggering event (such as
a keystroke or a network packet’s arrival) to the completed response (such
as an updated display or the transmission of a reply packet). Notice that a
high-performance system in one sense may be low-performance in the other.
For example, frequent context switches, which are bad for throughput, may
be necessary to optimize response time. Systems intended for direct inter-
action with a single user tend to be optimized for response time, even at the
expense of throughput, whereas centralized servers are usually designed for
high throughput as long as the response time is kept tolerable.

If an operating system is trying to schedule more than one runnable
thread per processor and if each thread is necessary in order to respond
to some event, then response time inevitably involves tradeoffs. Respond-
ing more quickly to one event by running the corresponding thread means
responding more slowly to some other event by leaving its thread in the
runnable state, awaiting later dispatch. One way to resolve this trade-off is
by using user-specified information on the relative urgency or importance
of the threads, as I describe in Section 3.3.3. However, even without that
information, the operating system may be able to do better than just shrug
its virtual shoulders.

Consider a real world situation. You get an email from a long-lost friend,
reporting what has transpired in her life and asking for a corresponding
update on what you have been doing for the last several years. You have
barely started writing what will inevitably be a long reply when a second
email message arrives, from a close friend, asking whether you want to go out
tonight. You have two choices. One is to finish writing the long letter and
then reply “sure” to the second email. The other choice is to temporarily
put your long letter aside, send off the one-word reply regarding tonight,
and then go back to telling the story of your life. Either choice extends your
response time for one email in order to keep your response time for the other
email as short as possible. However, that symmetry doesn’t mean there is
no logical basis for choice. Prioritizing the one-word reply provides much
more benefit to its response time than it inflicts harm on the other, more
time-consuming task.

If an operating system knows how much processor time each thread will
need in order to respond, it can use the same logic as in the email example
to guide its choices. The policy of Shortest Job First (SJF ) scheduling
minimizes the average response time, as you can demonstrate in Exercise 3.5.
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This policy dates back to batch processing systems, which processed a single
large job of work at a time, such as a company’s payroll or accounts payable.
System operators could minimize the average turnaround time from when
a job was submitted until it was completed by processing the shortest one
first. The operators usually had a pretty good idea how long each job would
take, because the same jobs were run on a regular basis. However, the reason
why you should be interested in SJF is not for scheduling batch jobs (which
you are unlikely to encounter), but as background for understanding how a
modern operating system can improve the responsiveness of threads.

Normally an operating system won’t know how much processor time each
thread will need in order to respond. One solution is to guess, based on past
behavior. The system can prioritize those threads that have not consumed
large bursts of processor time in the past, where a burst is the amount of
processing done between waits for external events. Another solution is for
the operating system to hedge its bets, so that that even if it doesn’t know
which thread needs to run only briefly, it won’t sink too much time into
the wrong thread. By switching frequently between the runnable threads,
if any one of them needs only a little processing time, it will get that time
relatively soon even if the other threads involve long computations.

The succesfulness of this hedge depends not only on the duration of
the time slices given to the threads, but also on the number of runnable
threads competing for the processor. On a lightly loaded system, frequent
switches may suffice to ensure responsiveness. By contrast, consider a system
that is heavily loaded with many long-running computations, but that also
occasionally has an interactive thread that needs just a little processor time.
The operating system can ensure responsiveness only by identifying and
prioritizing the interactive thread, so that it doesn’t have to wait in line
behind all the other threads’ time slices. However brief each of those time
slices is, if there are many of them, they will add up to a substantial delay.

3.3.3 Urgency, Importance, and Resource Allocation

The goals of high throughput and quick response time do not inherently
involve user control over the scheduler; a sufficiently smart scheduler might
make all the right decisions on its own. On the other hand, there are user
goals that revolve precisely around the desire to be able to say the following:
“This thread is a high priority; work on it.” I will explain three different
notions that often get confusingly lumped under the heading of priority.
To disentangle the confusion, I will use different names for each of them:
urgency, importance, and resource allocation. I will reserve the word priority
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for my later descriptions of specific scheduling mechanisms, where it may
be used to help achieve any of the goals: throughput, responsiveness, or the
control of urgency, importance, or resource allocation.

A task is urgent if it needs to be done soon. For example, if you have
a small homework assignment due tomorrow and a massive term paper to
write within the next two days, the homework is more urgent. That doesn’t
necessarily mean it would be smart for you to prioritize the homework; you
might make a decision to take a zero on the homework in order to free up
more time for the term paper. If so, you are basing your decision not only
on the two tasks’ urgency, but also on their importance; the term paper is
more important. In other words, importance indicates how much is at stake
in accomplishing a task in a timely fashion.

Importance alone is not enough to make good scheduling decisions either.
Suppose the term paper wasn’t due until a week from now. In that case, you
might decide to work on the homework today, knowing that you would have
time to write the paper starting tomorrow. Or, to take a third example,
suppose the term paper (which you have yet to even start researching) was
due in an hour, with absolutely no late papers accepted. In that case, you
might realize it was hopeless to even start the term paper, and so decide to
put your time into the homework instead.

Although urgency and importance are quite different matters, the pre-
cision with which a user specifies urgency will determine how that user can
control scheduling to reflect importance. If tasks have hard deadlines, then
importance can be dealt with as in the homework example—through a pro-
cess of ruthless triage. Here, importance measures the cost of dropping a
task entirely. On the other hand, the deadlines may be “soft,” with the
importance measuring how bad it is for each task to be late. At the other
extreme, the user might provide no information at all about urgency, instead
demanding all results “as soon as possible.” In this case, a high importance
task might be one to work on whenever possible, and a low importance
task might be one to fill in the idle moments, when there is nothing more
important to do.

Other than urgency and importance, another way in which users may
wish to express the relationship between different threads is by controlling
what fraction of the available processing resources they are allocated. Some-
times, this is a matter of fairness. For example, if two users are sharing a
computer, it might be fair to devote half of the processing time to one
user’s threads and the other half of the processing time to the other user’s
threads. In other situations, a specific degree of inequity may be desired.
For example, a web hosting company may sell shares of a large server to
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small companies for their websites. A company that wants to provide good
service to a growing customer base might choose to buy two shares of the
web server, expecting to get twice as much of the server’s processing time
in return for a larger monthly fee.

When it was common for thousands of users, such as university students,
to share a single computer, considerable attention was devoted to so-called
fair-share scheduling, in which users’ consumption of the shared processor’s
time was balanced out over relatively long time periods, such as a week.
That is, a user who did a lot of computing early in the week might find his
threads allocated only a very small portion of the processor’s time later in
the week, so that the other users would have a chance to catch up. A fair
share didn’t have to mean an equal share; the system administrator could
grant differing allocations to different users. For example, students taking
an advanced course might receive more computing time than introductory
students.

With the advent of personal computers, fair-share scheduling has fallen
out of favor, but another resource-allocation approach, proportional-share
scheduling, is still very much alive. (For example, you will see that the
Linux scheduler is largely based on the proportional-share scheduling idea.)
The main reason why I mention fair-share scheduling is to distinguish it
from proportional-share scheduling, because the two concepts have names
that are so confusingly close.

Proportional-share scheduling balances the processing time given to threads
over a much shorter time scale, such as a second. The idea is to focus only
on those threads that are runnable and to allocate processor time to them
in proportion with the shares the user has specified. For example, suppose
that I have a big server on which three companies have purchased time.
Company A pays more per month than companies B and C, so I have given
two shares to company A and only one share each to companies B and C.
Suppose, for simplicity, that each company runs just one thread, which I
will call thread A, B, or C, correspondingly. If thread A waits an hour for
some input to arrive over the network while threads B and C are runnable, I
will give half the processing time to each of B and C, because they each have
one share. When thread A’s input finally arrives and the thread becomes
runnable, it won’t be given an hour-long block of processing time to “catch
up” with the other two threads. Instead, it will get half the processor’s time,
and threads B and C will each get one quarter, reflecting the 2:1:1 ratio of
their shares.

The simplest sort of proportional-share scheduling allows shares to be
specified only for individual threads, such as threads A, B, and C in the pre-
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ceding example. A more sophisticated version allows shares to be specified
collectively for all the threads run by a particular user or otherwise belong-
ing to a logical group. For example, each user might get an equal share of
the processor’s time, independent of how many runnable threads the user
has. Users who run multiple threads simply subdivide their shares of the
processing time. Similarly, in the example where a big server is contracted
out to multiple companies, I would probably want to allow each company
to run multiple threads while still controlling the overall resource allocation
among the companies, not just among the individual threads.

Linux’s scheduler provides a flexible group scheduling facility. Threads
can be treated individually or they can be placed into groups either by user
or in any other way that the system administrator chooses. Up through
version 2.6.37, the default was for threads to receive processor shares indi-
vidually. However, this default changed in version 2.6.38. The new default
is to automatically establish a group for each terminal window. That way,
no matter how many CPU-intensive threads are run from within a par-
ticular terminal window, they won’t greatly degrade the system’s overall
performance. (To be completely precise, the automatically created groups
correspond not to terminal windows, but to groupings of processes known
as sessions. Normally each terminal window corresponds to a session, but
there are also other ways sessions can come into existence. Sessions are not
explained further in this book.)

Having learned about urgency, importance, and resource allocation, one
important lesson is that without further clarification, you cannot understand
what a user means by a sentence such as “thread A is higher priority than
thread B.” The user may want you to devote twice as much processing time
to A as to B, because A is higher priority in the sense of meriting a larger
proportion of resources. Then again, the user may want you to devote almost
all processing time to A, running B only in the spare moments when A goes
into a waiting state, because A is higher priority in the sense of greater
importance, greater urgency, or both.

Unfortunately, many operating systems have traditionally not given the
user a rich enough vocabulary to directly express more than one of these
goals. For example, the UNIX family of operating systems (including Mac
OS X and Linux) provides a way for the user to specify the niceness of a
thread. The word nice should be understood in the sense that a very nice
thread is one that is prone to saying, “Oh no, that’s all right, you go ahead
of me, I can wait.” In other words, a high niceness is akin to a low priority.
However, different members of this operating system family interpret this
single parameter, niceness, differently.
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The original tradition, to which Mac OS X still adheres, is that niceness
is an expression of importance; a very nice thread should normally only run
when there is spare processor time. Some newer UNIX-family schedulers,
such as in Linux, instead interpret the same niceness number as an expression
of resource allocation proportion, with nicer threads getting proportionately
less processor time. It is pointless arguing which of these interpretations of
niceness is the right one; the problem is that users have two different things
they may want to tell the scheduler, and they will never be able to do so
with only one control knob.

Luckily, some operating systems have provided somewhat more expres-
sive vocabularies for user control. For example, Mac OS X allows the user
to either express the urgency of a thread (through a deadline and related in-
formation) or its importance (through a niceness). These different classes of
threads are placed in a hierarchicial relationship; the assumption is that all
threads with explicit urgency information are more important than any of
the others. Similarly, some proportional-share schedulers, including Linux’s,
use niceness for proportion control, but also allow threads to be explicitly
flagged as low-importance threads that will receive almost no processing
unless a processor is otherwise idle.

As a summary of this section, Figure 3.6 shows a taxonomy of the
scheduling goals I have described. Figure 3.7 previews the scheduling mech-
anisms I describe in the next three sections, and Figure 3.8 shows which
goals each of them is designed to satisfy.

Scheduling goals

ControlPerformance

Throughput Response
time

Urgency Importance Resource
allocation

Figure 3.6: A user may want the scheduler to improve system performance or
to allow user control. Two different performance goals are high throughput
and fast response time. Three different ways in which a user may exert
control are by specifying threads’ urgency, importance, or resource share.
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Scheduling mechanisms

Proportional share
(Section 3.6)

Priority

Fixed priority
(Section 3.4)

Dynamic priority

Earliest Deadline
First (Section 3.5.1)

Decay usage
(Section 3.5.2)

Figure 3.7: A scheduling mechanism may be based on always running the
highest priority thread, or on pacing the threads to each receive a propor-
tional share of processor time. Priorities may be fixed, or they may be
adjusted to reflect either the deadline by which a thread must finish or the
thread’s amount of processor usage.

Mechanism Goals

fixed priority urgency, importance
Earliest Deadline First urgency

decay usage importance, throughput, response time
proportional share resource allocation

Figure 3.8: For each scheduling mechanism I present, I explain how it can
satisfy one or more of the scheduling goals.
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3.4 Fixed-Priority Scheduling

Many schedulers use a numerical priority for each thread; this controls which
threads are selected for execution. The threads with higher priority are
selected in preference to those with lower priority. No thread is ever left in
the runnable state but not running while another thread with lower priority
is running. The simplest way the priorities can be assigned is for the user
to manually specify the priority of each thread, generally with some default
value if none is explicitly specified. Although there may be some way for
the user to manually change a thread’s priority, one speaks of fixed-priority
scheduling as long as the operating system never automatically adjusts a
thread’s priority.

Fixed-priority scheduling suffices to achieve user goals only under limited
circumstances. However, it is simple, so many real systems offer it, at least
as one option. For example, both Linux and Microsoft Windows allow fixed-
priority scheduling to be selected for specific threads. Those threads take
precedence over any others, which are scheduled using other means I discuss
in Sections 3.5.2 and 3.6. In fact, fixed-priority scheduling is included as a
part of the international standard known as POSIX, which many operating
systems attempt to follow.

As an aside about priorities, whether fixed or otherwise, it is important
to note that some real systems use smaller priority numbers to indicate more
preferred threads and larger priority numbers to indicate those that are less
preferred. Thus, a “higher priority” thread may actually be indicated by a
lower priority number. In this book, I will consistently use “higher priority”
and “lower priority” to mean more and less preferred, independent of how
those are encoded as numbers by a particular system.

In a fixed-priority scheduler, the run queue can be kept in a data struc-
ture ordered by priority. If you have studied algorithms and data structures,
you know that in theory this could be efficiently done using a clever repre-
sentation of a priority queue, such as a binary heap. However, in practice,
most operating systems use a much simpler structure, because they use only
a small range of integers for the priorities. Thus, it suffices to keep an array
with one entry per possible priority. The first entry contains a list of threads
with the highest priority, the second entry contains a list of threads with
the next highest priority, and so forth.

Whenever a processor becomes idle because a thread has terminated
or entered a waiting state, the scheduler dispatches a runnable thread of
highest available priority. The scheduler also compares priorities when a
thread becomes runnable because it is newly initiated or because it is done
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waiting. If the newly runnable thread has higher priority than a running
thread, the scheduler preempts the running thread of lower priority; that is,
the lower-priority thread ceases to run and returns to the run queue. In its
place, the scheduler dispatches the newly runnable thread of higher priority.

Two possible strategies exist for dealing with ties, in which two or more
runnable threads have equally high priority. (Assume there is only one
processor on which to run them, and that no thread has higher priority than
they do.) One possibility is to run the thread that became runnable first
until it waits for some event or chooses to voluntarily yield the processor.
Only then is the second, equally high-priority thread dispatched. The other
possibility is to share the processor’s attention between those threads that
are tied for highest priority by alternating among them in a round-robin
fashion. That is, each thread runs for some small interval of time (typically
tens or hundreds of milliseconds), and then it is preempted from the clock
interrupt handler and the next thread of equal priority is dispatched, cycling
eventually back to the first of the threads. The POSIX standard provides
for both of these options; the user can select either a first in, first out (FIFO)
policy or a round robin (RR) policy.

Fixed-priority scheduling is not viable in an open, general-purpose envi-
ronment where a user might accidentally or otherwise create a high-priority
thread that runs for a long time. However, in an environment where all
the threads are part of a carefully quality-controlled system design, fixed-
priority scheduling may be a reasonable choice. In particular, it is frequently
used for so-called hard-real-time systems, such as those that control the flaps
on an airplane’s wings.

Threads in these hard-real-time systems normally perform periodic tasks.
For example, one thread may wake up every second to make a particular
adjustment in the flaps and then go back to sleep for the remainder of the
second. Each of these tasks has a deadline by which it must complete; if the
deadline is missed, the program has failed to meet its specification. (That
is what is meant by “hard real time.”) In the simplest case, the deadline
is the same as the period; for example, each second’s adjustment must be
done before the second is up. The designers of a system like this know all
the threads that will be running and carefully analyze the ensemble to make
sure no deadlines will ever be missed. In order to do this, the designers need
to have a worst-case estimate of how long each thread will run, per period.

I can illustrate the analysis of a fixed-priority schedule for a hard-real-
time system with some simple examples, which assume that the threads are
all periodic, with deadlines equal to their periods, and with no interactions
among them other than the competition for a single processor. To see how
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the same general ideas can be extended to cases where these assumptions
don’t hold, you could read a book devoted specifically to real-time systems.

Two key theorems, proved by Liu and Layland in a 1973 article, make it
easy to analyze such a periodic hard-real-time system under fixed-priority
scheduling:

• If the threads will meet their deadlines under any fixed priority as-
signment, then they will do so under an assignment that prioritizes
threads with shorter periods over those with longer periods. This pol-
icy is known as rate-monotonic scheduling.

• To check that deadlines are met, it suffices to consider the worst-
case situation, which is that all the threads’ periods start at the same
moment.

Therefore, to test whether any fixed-priority schedule is feasible, assign pri-
orities in the rate-monotonic fashion. Assume all the threads are newly
runnable at time 0 and plot out what happens after that, seeing whether
any deadline is missed.

To test the feasibility of a real-time schedule, it is conventional to use
a Gantt chart. This can be used to see whether a rate-monotonic fixed-
priority schedule will work for a given set of threads. If not, some scheduling
approach other than fixed priorities may work, or it may be necessary to
redesign using less demanding threads or hardware with more processing
power.

A Gantt chart is a bar, representing the passage of time, divided into
regions labeled to show what thread is running during the corresponding
time interval. For example, the Gantt chart

T1 T2 T1

0 5 15 20

shows thread T1 as running from time 0 to time 5 and again from time 15
to time 20; thread T2 runs from time 5 to time 15.

Consider an example with two periodically executing threads. One, T1,
has a period and deadline of four seconds and a worst-case execution time
per period of two seconds. The other, T2, has a period and deadline of six
seconds and a worst-case execution time per period of three seconds. On the
surface, this looks like it might just barely be feasible on a single processor:
T1 has an average demand of half a processor (two seconds per four) and
T2 also has an average demand of half a processor (three seconds per six),
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totalling to one fully utilized, but not oversubscribed, processor. Assume
that all overheads, such as the time to do context switching between the
threads, have been accounted for by including them in the threads’ worst-
case execution times.

However, to see whether this will really work without any missed dead-
lines, I need to draw a Gantt chart to determine whether the threads can
get the processor when they need it. Because T1 has the shorter period, I
assign it the higher priority. By Liu and Layland’s other theorem, I assume
both T1 and T2 are ready to start a period at time 0. The first six seconds
of the resulting Gantt chart looks like this:

T1 T2 T1

0 2 4 6

Note that T1 runs initially, when both threads are runnable, because it has
the higher priority. Thus, it has no difficulty making its deadline. When T1
goes into a waiting state at time 2, T2 is able to start running. Unfortu-
nately, it can get only two seconds of running done by the time T1 becomes
runnable again, at the start of its second period, which is time 4. At that
moment, T2 is preempted by the higher-priority thread T1, which occupies
the processor until time 6. Thus, T2 misses its deadline: by time 6, it has
run for only two seconds, rather than three.

If you accept Liu and Layland’s theorem, you will know that switching
to the other fixed-priority assignment (with T2 higher priority than T1)
won’t solve this problem. However, rather than taking this theorem at face
value, you can draw the Gantt chart for this alternative priority assignment
in Exercise 3.3 and see that again one of the threads misses its deadline.

In Section 3.5, I will present a scheduling mechanism that can handle
the preceding scenario successfully. First, though, I will show one more
example—this time one for which fixed-priority scheduling suffices. Suppose
T2’s worst-case execution time were only two seconds per six second period,
with all other details the same as before. In this case, a Gantt chart for the
first twelve seconds would look as follows:

T1 T2 T1 T2 T1 idle

0 2 4 6 8 10 12

Notice that T1 has managed to execute for two seconds during each of its
three periods (0–4, 4–8, and 8–12), and that T2 has managed to execute for
two seconds during each of its two periods (0–6 and 6–12). Thus, neither
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missed any deadlines. Also, you should be able to convince yourself that
you don’t need to look any further down the timeline, because the pattern
of the first 12 seconds will repeat itself during each subsequent 12 seconds.

3.5 Dynamic-Priority Scheduling

Priority-based scheduling can be made more flexible by allowing the operat-
ing system to automatically adjust threads’ priorities to reflect changing cir-
cumstances. The relevant circumstances, and the appropriate adjustments
to make, depend what user goals the system is trying to achieve. In this
section, I will present a couple different variations on the theme of dynami-
cally adjusted priorities. First, for continuity with Section 3.4, Section 3.5.1
shows how priorities can be dynamically adjusted for periodic hard-real-
time threads using a technique known as Earliest Deadline First scheduling.
Then Section 3.5.2 explains decay usage scheduling, a dynamic adjustment
policy commonly used in general-purpose computing environments.

3.5.1 Earliest Deadline First Scheduling

You saw in Section 3.4 that rate-monotonic scheduling is the optimal fixed-
priority scheduling method, but that even it couldn’t schedule two threads,
one of which needed two seconds every four and the other of which needed
three seconds every six. That goal is achievable with an optimal method for
dynamically assigning priorities to threads. This method is known as Earli-
est Deadline First (EDF ). In EDF scheduling, each time a thread becomes
runnable you re-assign priorities according to the following rule: the sooner
a thread’s next deadline, the higher its priority. The optimality of EDF is
another of Liu and Layland’s theorems.

Consider again the example with T1 needing two seconds per four and
T2 needing three seconds per six. Using EDF scheduling, the Gantt chart
for the first twelve seconds of execution would be as follows:

T1 T2 T1 T2 T1

0 2 5 7 10 12

There is no need to continue the Gantt chart any further because it will start
repeating. Notice that neither thread misses any deadlines: T1 receives two
seconds of processor time in each period (0–4, 4–8, and 8–12), while T2
receives three seconds of processing in each of its periods (0–6 and 6–12).
This works better than rate-monotonic scheduling because the threads are
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prioritized differently at different times. At time 0, T1 is prioritized over T2
because its deadline is sooner (time 4 versus 6). However, when T1 becomes
runnable a second time, at time 4, it gets lower priority than T2 because
now it has a later deadline (time 8 versus 6). Thus, the processor finishes
work on the first period of T2’s work, rather than starting in on the second
period of T1’s work.

In this example, there is a tie in priorities at time 8, when T1 becomes
runnable for the third time. Its deadline of 12 is the same as T2’s. If you
break the priority tie in favor of the already-running thread, T2, you obtain
the preceding Gantt chart. In practice, this is the correct way to break the
tie, because it will result in fewer context switches. However, in a theoretical
sense, any tie-breaking strategy will work equally well. In Exercise 3.4, you
can redraw the Gantt chart on the assumption that T2 is preempted in order
to run T1.

3.5.2 Decay Usage Scheduling

Although we all benefit from real-time control systems, such as those keep-
ing airplanes in which we ride from crashing, they aren’t the most prominent
computers in our lives. Instead, we mostly notice the workstation computers
that we use for daily chores, like typing this book. These computers may
execute a few real-time threads for tasks such as keeping an MP3 file of mu-
sic decoding and playing at its natural rate. However, typically, most of the
computer user’s goals are not expressed in terms of deadlines, but rather
in terms of a desire for quick response to interaction and efficient (high
throughput) processing of major, long-running computations. Dynamic pri-
ority adjustment can help with these goals too, in operating systems such
as Mac OS X or Microsoft Windows.

Occasionally, users of general-purpose workstation computers want to
express an opinion about the priority of certain threads in order to achieve
goals related to urgency, importance, or resource allocation. This works
especially well for importance; for example, a search for signs of extra-
terrestrial intelligence might be rated a low priority based on its small chance
of success. These user-specified priorities can serve as base priorities, which
the operating system will use as a starting point for its automatic adjust-
ments. Most of the time, users will accept the default base priority for all
their threads, and so the only reason threads will differ in priority is because
of the automatic adjustments. For simplicity, in the subsequent discussion,
I will assume that all threads have the same base priority.

In this kind of system, threads that tie for top priority after incorpo-
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rating the automatic adjustments are processed in a round-robin fashion,
as discussed earlier. That is, each gets to run for one time slice, and then
the scheduler switches to the next of the threads. The length of time each
thread is allowed to run before switching may also be called a quantum,
rather than a time slice. The thread need not run for its full time slice; it
could, for example, make an I/O request and go into a waiting state long
before the time slice is up. In this case, the scheduler would immediately
switch to the next thread.

One reason for the operating system to adjust priorities is to maximize
throughput in a situation in which one thread is processor-bound and an-
other is disk-bound. For example, in Chapter 2, I introduced a scenario
where the user is running a processor-intensive graphics rendering program
in one window, while running a disk-intensive virus scanning program in
another window. As I indicated there, the operating system can keep both
the processor and the disk busy, resulting in improved throughput relative
to using only one part of the computer system at a time. While the disk
is working on a read request from the virus scanner, the processor can be
doing some of the graphics rendering. As soon as the disk transaction is
complete, the scheduler should switch the processor’s attention to the virus
scanner. That way, the virus scanner can quickly look at the data that was
read in and issue its next read request, so that the disk drive can get back to
work without much delay. The graphics program will have time enough to
run again once the virus scanning thread is back to waiting for the disk. In
order to achieve this high-throughput interleaving of threads, the operating
system needs to assign the disk-intensive thread a higher priority than the
processor-intensive one.

Another reason for the operating system to adjust priorities is to mini-
mize response time in a situation where an interactive thread is competing
with a long-running computationally intensive thread. For example, sup-
pose that you are running a program in one window that is trying to set a
new world record for computing digits of π, while in another window you are
typing a term paper. During the long pauses while you rummage through
your notes and try to think of what to write next, you don’t mind the pro-
cessor giving its attention to computing π. But the moment you have an
inspiration and start typing, you want the word processing program to take
precedence, so that it can respond quickly to your keystrokes. Therefore,
the operating system must have given this word processing thread a higher
priority.

Notice that in both these situations, a computationally intensive thread
is competing with a thread that has been unable to use the processor for
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a while, either because it was waiting for a disk transaction to complete
or because it was waiting for the user to press another key. Therefore, the
operating system should adjust upward the priority of threads that are in
the waiting state and adjust downward the priority of threads that are in
the running state. In a nutshell, that is what decay usage schedulers, such
as the one in Mac OS X, do. The scheduler in Microsoft Windows also fits
the same general pattern, although it is not strictly a decay usage scheduler.
I will discuss both these schedulers in more detail in the remainder of this
section.

A decay usage scheduler, such as in Mac OS X, adjusts each thread’s
priority downward from the base priority by an amount that reflects recent
processor usage by that thread. (However, there is some cap on this ad-
justment; no matter how much the thread has run, its priority will not sink
below some minimum value.) If the thread has recently been running a lot,
it will have a priority substantially lower than its base priority. If the thread
has not run for a long time (because it has been waiting for the user, for
example), then its priority will equal the base priority. That way, a thread
that wakes up after a long waiting period will take priority over a thread
that has been able to run.

The thread’s recent processor usage increases when the thread runs and
decays when the thread waits, as shown in Figure 3.9. When the thread has
been running, its usage increases by adding in the amount of time that it ran.
When the thread has been waiting, its usage decreases by being multiplied
by some constant every so often; for example, Mac OS X multiplies the
usage by 5/8, eight times per second. Rather than continuously updating
the usage of every thread, the system can calculate most of the updates to
a particular thread’s usage just when its state changes, as I describe in the
next two paragraphs.

The currently running thread has its usage updated whenever it voluntar-
ily yields the processor, has its time slice end, or faces potential preemption
because another thread comes out of the waiting state. At these points, the
amount of time the thread has been running is added to its usage, and its
priority is correspondingly lowered. In Mac OS X, the time spent in the
running state is scaled by the current overall load on the system before it
is added to the thread’s usage. That way, a thread that runs during a time
of high load will have its priority drop more quickly to give the numerous
other contending threads their chances to run.

When a thread is done spending time in the waiting state, its usage is
adjusted downward to reflect the number of decay periods that have elapsed.
For example, in Mac OS X, the usage is multiplied by (5/8)n, where n is
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Figure 3.9: In a decay usage scheduler, such as Mac OS X uses, a thread’s
usage increases while it runs and decays exponentially while it waits. This
causes the priority to decrease while running and increase while waiting.

the number of eighths of a second that have elapsed. Because this is an
exponential decay, even a fraction of a second of waiting is enough to bring
the priority much of the way back to the base, and after a few seconds of
waiting, even a thread that previously ran a great deal will be back to base
priority. In fact, Mac OS X approximates (5/8)n as 0 for n ≥ 30, so any
thread that has been waiting for at least 3.75 seconds will be exactly at base
priority.

Microsoft Windows uses a variation on this theme. Recall that a decay
usage scheduler adjusts the priority downward from the base to reflect recent
running and restores the priority back up toward the base when the thread
waits. Windows does the reverse: when a thread comes out of a wait state,
it is given an elevated priority, which then sinks back down toward the base
priority as the thread runs. The net effect is the same: a thread that has been
waiting gets a higher priority than one that has been running. The other
difference is in how the specific numerical size of the change is calculated.
When the thread runs, Windows decreases its priority down to the base in a
linear fashion, as with decay usage scheduling. However, Windows does not
use exponential decay to boost waiting threads. Instead, a thread that has
been waiting is given a priority boost that depends on what it was waiting
for: a small boost after waiting for a disk drive, a larger boost after waiting
for input from the keyboard, and so forth. Because the larger boosts are
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associated with the kinds of waiting that usually take longer, the net effect
is broadly similar to what exponential decay of a usage estimate achieves.

As described in Section 3.4, a scheduler can store the run queue as an
array of thread lists, one per priority level. In this case, it can implement
priority adjustments by moving threads from one level to another. There-
fore, the Mac OS X and Microsoft Windows schedulers are both considered
examples of the broader class of multilevel feedback queue schedulers. The
original multilevel scheduler placed threads into levels primarily based on
the amount of main memory they used. It also used longer time slices for the
lower priority levels. Today, the most important multilevel feedback queue
schedulers are those approximating decay-usage scheduling.

One advantage to decreasing the priority of running processes below the
base, as in Mac OS X, rather than only down to the base, as in Microsoft
Windows, is that doing so will normally prevent any runnable thread from
being permanently ignored, even if a long-running thread has a higher base
priority. Of course, a Windows partisan could reply that if base priorities
indicate importance, the less important thread arguably should be ignored.
However, in practice, totally shutting out any thread is a bad idea; one rea-
son is the phenomenon of priority inversion, which I will explain in Chap-
ter 4. Therefore, Windows has a small escape hatch: every few seconds, it
temporarily boosts the priority of any thread that is otherwise unable to get
dispatched.

One thing you may notice from the foregoing examples is the tendancy
of magic numbers to crop up in these schedulers. Why is the usage decayed
by a factor of 5/8, eight times a second, rather than a factor of 1/2, four
times a second? Why is the time quantum for round-robin execution 10
milliseconds under one system and 30 milliseconds under another? Why
does Microsoft Windows boost a thread’s priority by six after waiting for
keyboard input, rather than by five or seven?

The answer to all these questions is that system designers have tuned the
numerical parameters in each system’s scheduler by trial and error. They
have done experiments using workloads similar to those they expect their
system to encounter in real use. Keeping the workload fixed, the exper-
imenter varies the scheduler parameters and measures such performance
indicators as response time and throughput. No one set of parameters will
optimize all measures of performance for all workloads. However, by careful,
systematic experimentation, parameters can be found that are likely to keep
most users happy most of the time. Sometimes system administrators can
adjust one or more of the parameters to suit the particular needs of their
own installations, as well.
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Before leaving decay usage schedulers, it is worth pointing out one kind
of user goal that these schedulers are not very good at achieving. Suppose
you have two processing-intensive threads and have decided you would like
to devote two-thirds of your processor’s attention to one and one-third to the
other. If other threads start running, they can get some of the processor’s
time, but you still want your first thread to get twice as much processing
as any of the other threads. In principle, you might be able to achieve
this resource allocation goal under a decay usage scheduler by appropriately
fiddling with the base priorities of the threads. However, in practice it is
very difficult to come up with appropriate base priorities to achieve desired
processor proportions. Therefore, if this kind of goal is important to a
system’s users, a different form of scheduler should be used, such as I discuss
in Section 3.6.

3.6 Proportional-Share Scheduling

When resource allocation is a primary user goal, the scheduler needs to take
a somewhat longer-term perspective than the approaches I have discussed
thus far. Rather than focusing just on which thread is most important to
run at the moment, the scheduler needs to be pacing the threads, doling out
processor time to them at controlled rates.

Researchers have proposed three basic mechanisms for controlling the
rate at which threads are granted processor time:

• Each thread can be granted the use of the processor equally often,
just as in a simple round-robin. However, those that have larger al-
locations are granted a longer time slice each time around than those
with smaller allocations. This mechanism is known as weighted round-
robin scheduling (WRR).

• A uniform time slice can be used for all threads. However, those that
have larger allocations can run more often, because the threads with
smaller allocations “sit out” some of the rotations through the list of
runnable threads. Several names are used for this mechanism, depend-
ing on the context and minor variations: weighted fair queuing (WFQ),
stride scheduling, and virtual time round-robin scheduling (VTRR).

• A uniform time slice can be used for all threads. However, those with
larger allocations are chosen to run more often (on the average), be-
cause the threads are selected by a lottery with weighted odds, rather
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than in any sort of rotation. This mechanism is called lottery schedul-
ing.

Lottery scheduling is not terribly practical, because although each thread
will get its appropriate share of processing time over the long run, there
may be significant deviations over the short run. Consider, for example, a
system with two threads, each of which should get half the processing time.
If the time-slice duration is one twentieth of a second, each thread should
run ten times per second. Yet one thread might get shut out for a whole
second, risking a major loss of responsiveness, just by having a string of bad
luck. A coin flipped twenty times per second all day long may well come up
heads twenty times in a row at some point. In Programming Project 3.2,
you will calculate the probability and discover that over the course of a
day the chance of one thread or the other going a whole second without
running is actually quite high. Despite this shortcoming, lottery scheduling
has received considerable attention in the research literature.

Turning to the two non-lottery approaches, I can illustrate the difference
between them with an example. Suppose three threads (T1, T2, and T3)
are to be allocated resources in the proportions 3:2:1. Thus, T1 should get
half the processor’s time, T2 one-third, and T3 one-sixth. With weighted
round-robin scheduling, I might get the following Gantt chart with times in
milliseconds:

T1 T2 T3

0 15 25 30

Taking the other approach, I could use a fixed time slice of 5 milliseconds,
but with T2 sitting out one round in every three, and T3 sitting out two
rounds out of three. The Gantt chart for the first three scheduling rounds
would look as follows (thereafter, the pattern would repeat):

T1 T2 T3 T1 T2 T1

0 5 10 15 20 25 30

Weighted round-robin scheduling has the advantage of fewer thread switches.
Weighted fair queueing, on the other hand, can keep the threads accumu-
lated runtimes more consistently close to the desired proportions. Exer-
cise 3.7 allows you to explore the difference.

In Linux, the user-specified niceness of a thread controls the proportion
of processor time that the thread will receive. The core of the scheduling
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algorithm is a weighted round-robin, as in the first Gantt chart. (A separate
scheduling policy is used for fixed-priority scheduling of real-time threads.
The discussion here concerns the scheduler used for ordinary threads.) This
proportional-share scheduler is called the Completely Fair Scheduler (CFS ).
On a multiprocessor system, CFS schedules the threads running on each pro-
cessor; a largely independent mechanism balances the overall computational
load between processors. The end-of-chapter notes revisit the question of
how proportional-share scheduling fits into the multiprocessor context.

Rather than directly assign each niceness level a time slice, CFS assigns
each niceness level a weight and then calculates the time slices based on the
weights of the runnable threads. Each thread is given a time slice propor-
tional to its weight divided by the total weight of the runnable threads. CFS
starts with a target time for how long it should take to make one complete
round-robin through the runnable threads. Suppose, for example, that the
target is 6 milliseconds. Then with two runnable threads of equal niceness,
and hence equal weight, each thread will run for 3 milliseconds, independent
of whether they both have niceness 0 or both have niceness 19. With four
equal-niceness threads, each would run 1.5 milliseconds.

Notice that the thread-switching rate is dependent on the overall system
load, unlike with a fixed time slice. This means that as a system using CFS
becomes more loaded, it will tend to sacrifice some throughput in order
to retain a desired level of responsiveness. The level of responsiveness is
controlled by the target time that a thread may wait between successive
opportunities to run, which is settable by the system administrator. The
value of 6 milliseconds used in the examples is the default for uniprocessor
systems.

However, if system load becomes extremely high, CFS does not con-
tinue sacrificing throughput to response time. This is because there is a
lower bound on how little time each thread can receive. After that point
is reached, adding additional threads will increase the total time to cycle
through the threads, rather than continuing to reduce the per-thread time.
The minimum time per thread is also a parameter the system administrator
can configure; the default value causes the time per thread to stop shrinking
once the number of runnable threads reaches 8.

Now consider a case where two threads share the CPU, one with niceness
0 and the other with niceness 5. CFS assigns these niceness levels the weights
of 1024 and 335, respectively. The time that the threads get is therefore
proportional to 1024/(1024 + 335) and 335/(1024 + 335). Because 1024 is
roughly 3 times as large as 335, we can estimate that the thread with niceness
0 will receive approximately 4.5 milliseconds out of each 6 milliseconds and
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the thread with niceness 5 will receive approximately 1.5 milliseconds out of
each 6 milliseconds. The same result would be achieved if the threads had
niceness 5 and 10 rather than 0 and 5, because the weights would then be 335
and 110, which are still in approximately a 3-to-1 ratio. More generally, the
CPU proportion is determined only by the relative difference in nicenesses,
rather than the absolute niceness levels, because the weights are arranged in
a geometric progression. (This is analogous to well-tempered musical scales,
where a particular interval, such as a major fifth, has the same harmonic
quality no matter where on the scale it is positioned, because the ratio of
frequencies is the same.)

Having seen this overview of how nicenesses control the allocation of
processor time in CFS, we can now move into a discussion of the actual
mechanism used to meter out the processor time. The CFS scheduling
mechanism is based around one big idea, with lots of smaller details that I
will largely ignore.

The big idea is keeping track for each thread of how much total running it
has done, measured in units that are scaled in accordance with the thread’s
weight. That is, a niceness 0 thread is credited with 1 nanosecond of running
for each nanosecond of time that elapses with the thread running, but a
niceness 5 thread would be credited with approximately 3 nanoseconds of
running for each nanosecond it actually runs. (More precisely, it would be
credited with 1024/335 nanoseconds of running for each actual nanosecond.)

Given this funny accounting of how much running the threads are doing
(which is called virtual runtime), the goal of keeping the threads running in
their proper proportion simply amounts to running whichever is the furthest
behind. However, if CFS always devoted the CPU to the thread that was
furthest behind, it would be constantly switching back and forth between the
threads. Instead, the scheduler sticks with the current thread until its time
slice runs out or it is preempted by a waking thread. Once the scheduler
does choose a new thread, it picks the thread with minimum virtual runtime.
Thus, over the long haul, the virtual runtimes are kept approximately in bal-
ance, which means the actual runtimes are kept in the proportion specified
by the threads’ weights, which reflect the threads’ nicenesses.

This concept of keeping virtual runtimes in balance is important enough
to consider a couple concrete examples. First, consider a case where two
threads have equal niceness, so the scheduler tries to make sure that the
two threads have run for equal amounts of time. After x nanoseconds have
elapsed, each of the two threads should have run for x/2 nanoseconds. To
make this always exactly true, the scheduler would need to keep switching
back and forth between the threads, which is inefficient. Instead, the sched-
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uler is willing to stick with one thread for a length of time, the time slice.
As a result, you might see that after 9 milliseconds, instead of each of the
two threads having run for 4.5 milliseconds, maybe thread A has run for
6 milliseconds and thread B has run for 3 milliseconds, as shown in Fig-
ure 3.10. When the scheduler decides which thread to run next, it will pick
the one that has only run for 3 milliseconds, that is, thread B, so that it has
a chance to catch up with thread A. That way, if you check again later, you
won’t see thread A continuing to get further and further advantaged over
thread B. Instead, you will see the two threads taking turns for which one
has run more, but with the difference between the two of them never being
very large, perhaps 3 milliseconds at most, as this example suggests.

Now consider what happens when the two threads have different niceness.
For example, suppose thread A has niceness 0 and thread B has niceness
5. To make the arithmetic easier, let us pretend that 1024/335 is exactly
3, so that thread A should run exactly 3 times more than thread B. Now,
even if the scheduler did not have to worry about the efficiency problems of
switching between the threads, the ideal situation after 9 milliseconds would
no longer be that each thread has run for 4.5 milliseconds. Instead, the ideal
would be for thread A to have run for 6.75 milliseconds and thread B for
only 2.25 milliseconds. But again, if the scheduler is only switching threads
when discrete time slices expire, this ideal situation will not actually happen.
Instead, you may see that thread A has run for 6 milliseconds and thread B
has run for 3 milliseconds, as shown in Figure 3.11. Which one should run
next? We can no longer say that thread B is further behind and should be
allowed to catch up. In fact, thread B has run for longer than it ought to
have. (Remember, it really ought to have only run for 2.25 milliseconds.)
The way the scheduler figures this out is that it multiplies each thread’s
time by a scaling factor. For thread A, that scaling factor is 1, whereas for
thread B, it is 3. Thus, although their actual runtimes are 6 milliseconds and
3 milliseconds, their virtual runtimes are 6 milliseconds and 9 milliseconds.
Now, looking at these virtual runtimes, it is clear that thread A is further
behind (it has only 6 virtual milliseconds) and thread B is ahead (it has 9
virtual milliseconds). Thus, the scheduler knows to choose thread A to run
next.

Notice that if thread A and thread B in this example were in their ideal
situation of having received 6.75 real milliseconds and 2.25 real milliseconds,
then their virtual runtimes would be exactly tied. Both threads would have
run for 6.75 virtual milliseconds, once the scaling factors are taken into
account.

This description of accumulating virtual runtime would suffice if all



76 CHAPTER 3. SCHEDULING

A B A

0 3 6 9
Time

Virtual Runtime

A

B3

6

Figure 3.10: Because thread A and thread B both have niceness 0, each
accumulates 1 millisecond of virtual runtime for each elapsed millisecond
during which it runs. The bottom of this figure shows a Gantt chart indi-
cating which thread is running at each point. The top of the figure plots
virtual runtime versus time for thread A (solid) and thread B (dashed). At
the 9 millisecond point, the scheduler would choose thread B to run next,
because it has the lower virtual runtime.
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Figure 3.11: Thread A still accumulates 1 millisecond of virtual runtime
for each elapsed millisecond during which it runs, but thread B accumu-
lates virtual runtime at approximately 3 times as fast a rate, because it has
niceness 5. The bottom of this figure shows a Gantt chart indicating which
thread is running at each point. The top of the figure plots virtual runtime
versus time for thread A (solid) and thread B (dashed). At the 9 millisecond
point, the scheduler would choose thread A to run next, because it has the
lower virtual runtime, corresponding to the fact that it has only run twice
as much as thread B, rather than three times as much. (Assuming both
threads remained runnable the whole time, the actual Linux CFS scheduler
would not have given them equal time slices as shown here. However, the
accounting for virtual runtime works the same in any case.)
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threads started when the system was first booted and stayed continuously
runnable. However, it needs a bit of enhancement to deal with threads
being created or waking up from timed sleeps and I/O waits. If the sched-
uler didn’t do anything special with them, they would get to run until they
caught up with the pre-existing threads, which could be a ridiculous amount
of runtime for a newly created thread or one that has been asleep a long
time. Giving that much runtime to one thread would deprive all the other
threads of their normal opportunity to run.

For a thread that has only been briefly out of the run queue, the CFS
actually does allow it to catch up on runtime. But once a thread has been
non-runnable for more than a threshold amount of time, when it wakes up,
its virtual runtime is set forward so as to be only slightly less than the
minimum virtual runtime of any of the previously runnable threads. That
way, it will get to run soon but not for much longer than usual. This is similar
to the effect achieved through dynamic priority adjustments in decay usage
schedulers and Microsoft Windows. As with those adjustments, the goal is
not proportional sharing, but responsiveness and throughput.

Any newly created thread is given a virtual runtime slightly greater than
the minimum virtual runtime of the previously runnable threads, essentially
as though it had just run and were now waiting for its next turn to run.

The run queue is kept sorted in order of the runnable threads’ virtual
runtimes. The data structure used for this purpose is a red-black tree, which
is a variant of a binary search tree with the efficiency-enhancing property
that no leaf can ever be more than twice as deep as any other leaf. When the
CFS scheduler decides to switch threads, it switches to the leftmost thread
in the red-black tree, that is, the one with the earliest virtual runtime.

The scheduler performs these thread switches under two circumstances.
One is the expiration of a time slice. The other is when a new thread
enters the run queue, provided that the currently running thread hasn’t just
recently started running. (There is a configurable lower limit on how quickly
a thread can be preempted.)

One of the advantages of positioning runnable threads on a timeline
of virtual runtimes (represented as the red-black tree) is that it naturally
prevents waking threads from starving other threads that have remained
runnable, as was possible with earlier Linux schedulers. As time marches
on, threads that wake up get inserted into the timeline at later and later
virtual runtimes. A runnable thread that has been patiently waiting for the
CPU, on the other hand, retains a fixed virtual runtime. As such, it will
eventually have the lowest virtual runtime, and hence will be chosen to run
(once a thread switch occurs).
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3.7 Security and Scheduling

The kind of attack most relevant to scheduling is the denial of service (DoS )
attack, that is, an attack with the goal of preventing legitimate users of a
system from being able to use it. Denial of service attacks are frequently
nuisances motivated by little more than the immaturity of the perpetrators.
However, they can be part of a more sophisticated scheme. For example,
consider the consequences if a system used for coordinating a military force
were vulnerable to a denial of service attack.

The most straightforward way an attacker could misuse a scheduler in
order to mount a denial of service attack would be to usurp the mechanisms
provided for administrative control. Recall that schedulers typically provide
some control parameter for each thread, such as a deadline, a priority, a base
priority, or a resource share. An authorized system administrator needs to be
able to say “This thread is a really low priority” or the analogous statement
about one of the other parameters. If an attacker could exercise that same
control, a denial of service attack could be as simple as giving a low priority
to a critical thread.

Therefore, real operating systems guard the thread-control interfaces.
Typically, only a user who has been authenticated as the “owner” of a partic-
ular thread or as a bona fide system administrator can control that thread’s
scheduling parameters. (Generally the owner of a thread will be whatever
user ran the program that created the thread.) Naturally, this relies upon
other aspects of the system’s security that I will consider in later chapters:
the system must be protected from tampering, must be able to authenticate
the identity of its users, and must be programmed in a sufficiently error-free
fashion that its checks cannot be evaded.

Because real systems guard against an unauthorized user de-prioritizing
a thread, attackers use a slightly more sophisticated strategy. Rather than
de-prioritizing the targeted thread, they compete with it. That is, the at-
tackers create other threads that attempt to siphon off enough of a scarce
resource, such as processor time, so that little or none will be left for the
targeted thread.

One response of system designers has been to arrange that any denial
of service attack will be sufficiently cumbersome that it can be easily dis-
tinguished from normal behavior and hence interdicted. For example, recall
that a single thread at a high fixed priority could completely starve all
the normal threads. Therefore, most systems prohibit normal users from
running such threads, reserving that privilege to authorized system admin-
istrators. In fact, typical systems place off-limits all fixed priorities and



80 CHAPTER 3. SCHEDULING

all higher-than-normal priorities, even if subject to decay-usage adjustment.
The result is that an attacker must run many concurrent threads in order
to drain off a significant fraction of the processor’s time. Because legitimate
users generally won’t have any reason to do that, denial of service attacks can
be distinguished from ordinary behavior. A limit on the number of threads
per user will constrain denial of service attacks without causing most users
much hardship. However, there will inevitably be a trade-off between the
degree to which denial of service attacks are mitigated and the degree to
which normal users retain flexibility to create threads.

Alternatively, a scheduling policy can be used that is intrinsically more
resistant to denial of service attacks. In particular, proportional-share sched-
ulers have considerable promise in this regard. The version that Linux in-
cludes can assign resource shares to users or other larger groups, with those
shares subject to hierarchical subdivision. This was originally proposed by
Waldspurger as part of lottery scheduling, which I observed is disfavored
because of its susceptibility to short-term unfairness in the distribution of
processing time. Waldspurger later showed how the same hierarchical ap-
proach could be used with stride scheduling, a deterministic proportional-
share scheduler, and it has subsequently been used with a variety of other
proportional-share schedulers.

Long-running server threads, which over their lifetimes may process re-
quests originating from many different users, present an additional compli-
cation. If resources are allocated per user, which user should be funding the
server thread’s resource consumption? The simplest approach is to have a
special user just for the purpose with a large enough resource allocation to
provide for all the work the server thread does on behalf of all the users.
Unfortunately, that is too coarse-grained to prevent denial of service attacks.
If a user submits many requests to the server thread, he or she may use up
its entire processor time allocation. This would deny service to other users’
requests made to the same server thread. Admittedly, threads not using the
service will be isolated from the problem, but that may be small solace if
the server thread in question is a critical one.

To address this issue, recent research has suggested that threads should
be able to switch from one user’s resource allocation to another, as the
threads handle different requests. The idea is to allocate resources not di-
rectly to threads, but to independent resource containers instead. At any
one time, each thread draws resources from one resource container. How-
ever, it can switch to drawing from a different resource container. This
solves the problem of fairly accounting for server threads’ usage. Because
multiple threads can be made to draw out of a single resource container, the
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same proposal also can prevent users from receiving more processor time by
running more threads.

Finally, keep in mind that no approach to processor scheduling taken
alone will prevent denial of service attacks. An attacker will simply over-
whelm some other resource than processor time. For example, in the 1990s,
attackers frequently targeted systems’ limited ability to establish new net-
work connections. Nonetheless, a comprehensive approach to security needs
to include processor scheduling, as well as networking and other components.

Exercises

3.1 Gantt charts, which I introduced in the context of hard-real-time
scheduling, can also be used to illustrate other scheduling concepts,
such as those concerning response time. Suppose thread T1 is trig-
gered by an event at time 0 and needs to run for 1.5 seconds before it
can respond. Suppose thread T2 is triggered by an event occurring 0.3
seconds later than T1’s trigger, and that T2 needs to run 0.2 seconds
before it can respond. Draw a Gantt chart for each of the following
three cases, and for each indicate the response time of T1, the response
time of T2, and the average response time:

(a) T1 is allowed to run to completion before T2 is run.

(b) T1 is preempted when T2 is triggered; only after T2 has com-
pleted does T1 resume.

(c) T1 is preempted when T2 is triggered; the two threads are then
executed in a round-robin fashion (starting with T2), until one
of them completes. The time slice (or quantum) is .05 seconds.

3.2 Suppose a Linux system is running three threads, each of which runs an
infinite loop with nothing in the body, so that it just chews up as much
processor time as it is given. One thread is run by one user, whereas
the other two threads are run by a second user (perhaps logged in over
the network or in a second terminal window). Does the scheduler give
each user a fair share (one-half) of the processor’s time, or does it give
each thread a fair share (one-third)? The answer depends on whether
the group scheduling feature is left in its default configuration or is
disabled; you should provide an answer for each case. You can answer
this question from the text of this chapter, but see also Exploration
Project 3.1. Also, which behavior would you prefer? Explain why.
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3.3 Draw a Gantt chart for two threads, T1 and T2, scheduled in accor-
dance to fixed priorities with T2 higher priority than T1. Both threads
run periodically. One, T1, has a period and deadline of four seconds
and an execution time per period of two seconds. The other, T2, has
a period and deadline of six seconds and an execution time per pe-
riod of three seconds. Assume both threads start a period at time 0.
Draw the Gantt chart far enough to show one of the threads missing
a deadline.

3.4 Draw a Gantt chart for two threads, T1 and T2, scheduled in accor-
dance with the Earliest Deadline First policy. If the threads are tied
for earliest deadline, preempt the already-running thread in favor of
the newly runnable thread. Both threads run periodically. One, T1,
has a period and deadline of four seconds and an execution time per
period of two seconds. The other, T2, has a period and deadline of six
seconds and an execution time per period of three seconds. Assume
both threads start a period at time 0. Draw the Gantt chart to the
point where it would start to repeat. Are the deadlines met?

3.5 Suppose a system has three threads (T1, T2, and T3) that are all
available to run at time 0 and need one, two, and three seconds of
processing, respectively. Suppose that each thread is run to completion
before starting another. Draw six different Gantt charts, one for each
possible order the threads can be run in. For each chart, compute the
turnaround time of each thread; that is, the time elapsed from when
it was ready (time 0) until it is complete. Also, compute the average
turnaround time for each order. Which order has the shortest average
turnaround time? What is the name for the scheduling policy that
produces this order?

3.6 The following analysis is relevant to lottery scheduling and is used in
Programming Project 3.2. Consider a coin that is weighted so that
it comes up heads with probability p and tails with probability 1− p,
for some value of p between 0 and 1. Let f(n, k, p) be the probability
that in a sequence of n tosses of this coin there is a run of at least k
consecutive heads.

(a) Prove that f(n, k, p) can be defined by the following recurrence.
If n < k, f(n, k, p) = 0. If n = k, f(n, k, p) = pk. If n > k,

f(n, k, p) = f(n− 1, k, p) + pk(1− p)(1− f(n− k − 1, k, p)).
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(b) Consider the probability that in n tosses of a fair coin, there are
at least k consecutive heads or at least k consecutive tails. Show
that this is equal to f(n− 1, k − 1, 1/2).

(c) As an alternative to the formula in part (b), it has been incor-
rectly suggested that the probability in n tosses of having ei-
ther at least k consecutive heads or at least k consecutive tails
can be calculated as 2f(n, k, 1/2)− f(n, k, 1/2)2, or equivalently
1− (1− f(n, k, 1/2))2. Explain the reasoning that would lead to
either of these incorrect formulas and point out the fallacy in that
reasoning. Additionally, show the difference between the answers
from these incorrect formulas and the correct formula of part (b)
in a small case such as n = k = 1, n = k = 2, or n = 2 and k = 1;
use a full enumeration of possibilities to verify which answer is
correct.

3.7 Section 3.6 shows two Gantt charts for an example with three threads
that are to share a processor in the proportion 3:2:1. The first Gantt
chart shows the three threads scheduled using WRR and the second
using WFQ. For each of the two Gantt charts, draw a corresponding
graph with one line for each the three threads, showing that thread’s
accumulated virtual runtime (on the vertical axis) versus real time (on
the horizontal axis). Thread T1 should accumulate 2 milliseconds of
virtual runtime for each millisecond that it actually runs. Similarly,
thread T2 should accumulate 3 milliseconds of virtual runtime for each
millisecond it runs and thread T3 should accumulate 6 milliseconds for
each millisecond it runs. In both graphs, the three lines should all start
at (0, 0) and end at (30, 30). Look at how far the lines deviate from
the diagonal connecting these two points. Which scheduling approach
keeps the lines closer to the diagonal? This reflects how close each
approach is coming to continuously metering out computation to the
three threads at their respective rates.

3.8 Draw a variant of Figure 3.11 on page 77 based on the assumption that
the scheduler devotes 4.5 milliseconds to thread A, then 1.5 millisec-
onds to thread B, and then another 3 milliseconds to thread A. If the
scheduler is again called upon to choose a thread at the 9 millisecond
point, which will it choose? Why?
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Programming Projects

3.1 On a system where you can install modified Linux kernels, test the
effect of eliminating dynamic priority adjustments. (You will find the
relevant code in the file kernel/sched.c.) You should be able to
demonstrate that there is no change in how compute-bound processes
share the processor in accordance with their niceness. You should also
be able to demonstrate that the responsiveness of interactive processes
is degraded when there are lots of compute-bound processes running
as well. Rather than testing response time with a process that reads
input from the user, you can more easily get quantitative results with
a process that repeatedly sleeps and measures how much longer each
sleeping period actually is than was requested. Write a report in which
you explain what you did, and the hardware and software system con-
text in which you did it, carefully enough that someone could replicate
your results.

3.2 Consider a coin that is weighted so that it comes up heads with prob-
ability p and tails with probability 1−p, for some value of p between 0
and 1. Let f(n, k, p) be the probability that in a sequence of n tosses
of this coin there is a run of at least k consecutive heads.

(a) Write a program to calculate f(n, k, p) using the recurrence given
in Exercise 3.6(a). To make your program reasonably efficient,
you will need to use the algorithm design technique known as dy-
namic programming. That is, you should create an n+1 element
array, and then for i from 0 to n, fill in element i of the array
with f(i, k, p). Whenever the calculation of one of these values
of f requires another value of f , retrieve the required value from
the array, rather than using a recursive call. At the end, return
element n of the array.

(b) If threads A and B each are selected with probability 1/2 and
the time slice is 1/20 of a second, the probability that sometime
during a day thread A will go a full second without running is
f(20·60·60·24, 20, 1/2). Calculate this value using your program.

(c) The system’s performance is no better if thread B goes a long
time without running than if thread A does. Use the result from
Exercise 3.6(b) to calculate the probability that at least one of
threads A and B goes a second without processor time in the
course of a day.
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Exploration Projects

3.1 Experimentally verify your answer to Exercise 3.2 with the help of
another user. The top command will show you what fraction of the
processor each thread gets. To disable the automatic group scheduling,
boot the kernel with the noautogroup option.

3.2 Experimentally measure the impact of niceness on the amount of pro-
cessor time given to compute-bound threads under as many UNIX-like
uniprocessor systems as you have access to. This will be most interest-
ing if you can compare a system with a proportional-share scheduler
(such as Linux) with a system that uses a decay usage scheduler (such
as Mac OS X or most older versions of UNIX). Be sure to experiment
on a system that is otherwise idle. Write a simple test program that
just loops. Run one copy normally (niceness 0) and another using the
nice command at elevated niceness. Use the top command to observe
what fraction of the processor each thread gets. Repeat the test using
different degrees of elevated niceness, from 1 to 19. Also, repeat the
test in situations other than one thread of each niceness; for example,
what if there are four normal niceness threads and only one elevated
niceness thread? Write a report in which you explain what you did,
and the hardware and software system context in which you did it,
carefully enough that someone could replicate your results. Try to
draw some conclusions about the suitability of niceness as a resource
allocation tool on the systems you studied.

Note that in order to observe the impact of niceness under Linux, you
need to run all the threads within a single scheduling group. The
simplest way to do that is to run all the threads from within a single
terminal window. Alternatively, you can boot the kernel with the
noautogroup option.

3.3 The instructions for this project assume that you are using a Linux
system; an analogous exploration may be possible on other systems,
but the specific commands will differ. Some portions of the project
assume you have permission to run fixed-priority threads, which ordi-
narily requires you to have full system administration privileges. Those
portions of the project can be omitted if you don’t have the requisite
permission. Some portions of the project assume you have at least two
processors, which can be two “cores” within a single processor chip;
in fact, even a single core will do if it has “hyper-threading” support
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(the ability to run two threads). Only quite old computers fail to meet
this assumption; if you have such an old computer, you can omit those
portions of the project.

The C++ program shown in Figures 3.12 and 3.13 runs a number of
threads that is specified on the command line. (The main thread is
one; it creates a child thread for each of the others.) Each thread gets
the time of day when it starts running and then continues running
until the time of day is at least 5 seconds later. If you save the source
code of this program in threads.cpp, you can compile it using the
following command:

g++ -o threads -pthread threads.cpp

(a) Suppose you run this program on a single processor using the nor-
mal CFS scheduler. As you increase the number of threads from
1 to 2, 3, and 4, what would you expect to happen to the total
elapsed time that the program needs to run? Would it stay nearly
constant at approximately 5 seconds or grow linearly upward to
10, 15, and 20 seconds? Why? To test your prediction, run the
following commands and look at the elapsed time that each one
reports. The schedtool program is used in these commands in
order to limit the threads to a single processor (processor number
0):

schedtool -a 0 -e time ./threads 1

schedtool -a 0 -e time ./threads 2

schedtool -a 0 -e time ./threads 3

schedtool -a 0 -e time ./threads 4

(b) Suppose you run the program on a single processor but using the
fixed-priority scheduler. All the threads are at the same priority
level and are scheduled using the FIFO rule. As you increase
the number of threads from 1 to 2, 3, and 4, what would you
expect to happen to the total elapsed time that the program
needs to run? Would it stay nearly constant at approximately
5 seconds or grow linearly upward to 10, 15, and 20 seconds?
Why? To test your prediction, run the following commands and
look at the elapsed time that each one reports. The schedtool

program is used in these commands not only to limit the threads
to a single processor, but also to specify FIFO scheduling with
priority level 50. The sudo program is used in these commands
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#include <sys/time.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <pthread.h>

#include <iostream>

#include <sstream>

#include <unistd.h>

void killTime(int secs){

struct timeval start, now;

if(gettimeofday(&start, 0) < 0){

perror("gettimeofday");

exit(1);

}

while(1){

if(gettimeofday(&now, 0) < 0){

perror("gettimeofday");

exit(1);

}

if(now.tv_sec - start.tv_sec > secs ||

now.tv_sec - start.tv_sec == secs && now.tv_usec >= start.tv_usec){

return;

}

}

}

void *run(void *arg){

killTime(5);

return 0;

}

Figure 3.12: This is the first portion of threads.cpp, a C++ program that
runs a number of threads specified on the command line. Each thread runs
until at least 5 seconds of time has elapsed since the thread started. The
program is continued in the next figure.
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int main(int argc, char *argv[]){

int nThreads;

std::istringstream arg1(argv[1]);

arg1 >> nThreads;

pthread_t thread[nThreads-1];

int code;

for(int i = 0; i < nThreads-1; i++){

code = pthread_create(&thread[i], 0, run, 0);

if(code){

std::cerr << "pthread_create failed: " << strerror(code) << std::endl;

exit(1);

}

}

run(0);

for(int i = 0; i < nThreads-1; i++){

code = pthread_join(thread[i], 0);

if(code){

std::cerr << "pthread_join failed: " << strerror(code) << std::endl;

exit(1);

}

}

return 0;

}

Figure 3.13: This is the second portion of threads.cpp, a C++ program
that runs a number of threads specified on the command line. Each thread
runs until at least 5 seconds of time has elapsed since the thread started.
The program is continued from the previous figure.
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to run with system administration privileges (assuming you have
this permission); this allows the FIFO fixed-priority scheduling
to be selected:

sudo schedtool -a 0 -F -p 50 -e time ./threads 1

sudo schedtool -a 0 -F -p 50 -e time ./threads 2

sudo schedtool -a 0 -F -p 50 -e time ./threads 3

sudo schedtool -a 0 -F -p 50 -e time ./threads 4

(c) The time output lines that were generated by the prior experi-
ments included not only elapsed time, but also user and system
processor times. If you add together the user and system proces-
sor times to get total processor times, you should find that the
total is in each case quite similar to the elapsed time, because the
threads program kept the one processor busy essentially the full
time. Now suppose you switch to using two processors. With nor-
mal CFS scheduling, what do you expect to happen to the total
processor time as the number of threads goes from 1 to 2, 3, and
4? Why? To test your prediction, run the following commands:

schedtool -a 0,1 -e time ./threads 1

schedtool -a 0,1 -e time ./threads 2

schedtool -a 0,1 -e time ./threads 3

schedtool -a 0,1 -e time ./threads 4

(d) Suppose you use two processors with fixed-priority FIFO schedul-
ing. What do you expect to happen to the total processor time
as the number of threads goes from 1 to 2, 3, and 4? Why? How
about the elapsed time; what do you expect will happen to it as
the number of threads goes from 1 to 2, 3, and 4? Why? To test
your predictions, run the following commands:

sudo schedtool -a 0,1 -F -p 50 -e time ./threads 1

sudo schedtool -a 0,1 -F -p 50 -e time ./threads 2

sudo schedtool -a 0,1 -F -p 50 -e time ./threads 3

sudo schedtool -a 0,1 -F -p 50 -e time ./threads 4

Notes

I motivated the notion of thread states by explaining the inefficiency of busy
waiting and indicated that the alternative is for a thread that wants to wait
to notify the operating system. This issue was recognized early in the history
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of operating systems. For example, the same 1959 paper [34] by Codd et
al. that I quoted in Chapter 2 remarks, “For the sake of efficient use of the
machine, one further demand is made of the programmer or compiler. When
a point is reached in a problem program beyond which activity on the central
processing unit cannot proceed until one or more input-output operations
are completed, the control must be passed to the supervisory program so
that other problem programs may be serviced.” (The “supervisory program”
is what today is called an operating system.)

I remarked that the main cost of thread switching is lost cache per-
formance. This observation has been quantified in various measurement
studies, such as one by Regehr [118].

I use the terms quantum and time slice interchangeably, in keeping
with contemporary usage. Early operating systems used these words dif-
ferently: quanta were finer subdivisions of coarser time slices. A subset
of the runnable threads would get brief quanta in a round-robin. When a
thread had received enough quanta to use up its whole time slice, it would
be moved out of the round-robin for a while, and another thread would move
in to take its place.

I mentioned fair-share, multilevel feedback queue, lottery, and stride
scheduling only in passing. Early references for them are numbers [86], [38],
[152], and [153], respectively.

Liu and Layland wrote a seminal 1973 article on hard-real-time schedul-
ing [103]. For a survey of how rate-monotonic scheduling has been general-
ized to more realistic circumstances, see the article by Sha, Rajkumar, and
Sathaye [133].

I drew examples from three real systems’ schedulers: Mac OS X, Mi-
crosoft Windows, and Linux. For two of these (Mac OS X and Linux), the
only reliable way to find the information is by reading the kernel source code,
as I did (versions Darwin 6.6 and Linux 2.6.38). For Microsoft Windows,
the source code is not publicly available, but conversely, one doesn’t need
to dig through it to find a more detailed description than mine: there is a
very careful one in Russinovich and Solomon’s book [126].

My segue from decay usage scheduling to proportional-share scheduling
was the remark that one could, in principle, achieve proportional shares by
suitably setting the base priorities of a decay usage scheduler, but that in
practice, it was difficult to map proportions to base priorities. The mathe-
matical modeling study by Hellerstein [74] provides evidence for both aspects
of this claim. Hellerstein explicitly shows that one can, in principle, achieve
what he terms “service rate objectives.” However, less explicitly, he also
shows this is not practical; reading his graphs carefully, one can see that
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there are two choices. Either the service rates are so insensitive to the base
priorities as to render most proportions out of reach, or there is a region of
such extreme sensitivity that one jumps over many potential proportions in
stepping from one base priority difference to the next.

I remarked that although Linux’s CFS acts as a proportional-share sched-
uler on each processor, a relatively independent load-balancing mechanism
is used to apportion a system’s threads to its processors. In considering
whether the proportional-share concept could be more directly applied to
the multiprocessor context, the first question is what that would mean. Sup-
pose two threads are runnable and that they have weights 2 and 1. On a
single processor, it is clear that the first should get two-thirds of the pro-
cessing capacity and the other should get one-third. But what if you have
two processors? Then the most that one thread can receive is half of the
system’s total processing capacity. The other thread could receive half as
much, but only by leaving one of the processors idle half the time; a more
practical approach would be to give each thread the full use of one processor.
Generalizing from this to a suitable definition of how weights should behave
on a multiprocessor system requires some care; Chandra and his coworkers
explained this in their work on “Surplus Fair Scheduling” [29]. Once this
definitional question is resolved, the next question is how the scheduler can
efficiently run on multiple processors without the bottleneck of synchronized
access to a single run queue. Although this is still an active research topic,
the Distributed Weighted Round Robin scheduler of Li, Baumberger, and
Hahn [100] looks promising.

An alternative to proportional-share scheduling is to augment the sched-
uler with a higher-level resource manager that adjusts thread priorities when
the system is heavily utilized so as to achieve the desired resource allocation.
An example of this approach is the Windows System Resource Manager that
Microsoft includes in Windows Server 2008 R2. This resource manager can
support policies that divide CPU time equally per process, per user, per
remote desktop session, or per web application pool, as well as allowing
some users or groups to be given larger shares than others. The details do
not appear to be publicly documented, though some information is available
through Microsoft’s online TechNet library.

Resource containers are described by Banga, Druschel, and Mogul [10].
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Chapter 4

Synchronization and
Deadlocks

4.1 Introduction

In Chapters 2 and 3, you have seen how an operating system can support
concurrent threads of execution. Now the time has come to consider how
the system supports controlled interaction between those threads. Because
threads running at the same time on the same computer can inherently
interact by reading and writing a common set of memory locations, the hard
part is providing control. In particular, this chapter will examine control
over the relative timing of execution steps that take place in differing threads.

Recall that the scheduler is granted considerable authority to temporar-
ily preempt the execution of a thread and dispatch another thread. The
scheduler may do so in response to unpredictable external events, such as
how long an I/O request takes to complete. Therefore, the computational
steps taken by two (or more) threads will be interleaved in a quite un-
predictable manner, unless the programmer has taken explicit measures to
control the order of events. Those control measures are known as synchro-
nization. The usual way for synchronization to control event ordering is by
causing one thread to wait for another.

In Section 4.2, I will provide a more detailed case for why synchroniza-
tion is needed by describing the problems that can occur when interacting
threads are not properly synchronized. The uncontrolled interactions are
called races. By examining some typical races, I will illustrate the need for
one particular form of synchronization, mutual exclusion. Mutual exclusion
ensures that only one thread at a time can operate on a shared data struc-
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ture or other resource. Section 4.3 presents two closely related ways mutual
exclusion can be obtained. They are known as mutexes and monitors.

After covering mutual exclusion, I will turn to other, more general syn-
chronization challenges and to mechanisms that can address those chal-
lenges. To take one example, you may want to ensure that some memory
locations are read after they have been filled with useful values, rather than
before. I devote Section 4.4 to enumerating several of the most common
synchronization patterns other than mutual exclusion. Afterward, I devote
Sections 4.5 and 4.6 to two popular mechanisms used to handle these sit-
uations. One, condition variables, is an important extension to monitors;
the combination of monitors with condition variables allows many situations
to be cleanly handled. The other, semaphores, is an old favorite because it
provides a single, simple mechanism that in principle suffices for all synchro-
nization problems. However, semaphores can be hard to understand and use
correctly.

Synchronization solves the problem of races, but it can create a new
problem of its own: deadlock. Recall that synchronization typically involves
making threads wait; for example, in mutual exclusion, a thread may need
to wait its turn in order to enforce the rule of one at a time. Deadlock results
when a cycle of waiting threads forms; for example, thread A waits for thread
B, which happens to be waiting for thread A, as shown in Figure 4.1. Because
this pathology results from waiting, I will address it and three of the most
practical cures in Section 4.7, after completing the study of waiting-based
means of synchronization.

Waiting also interacts with scheduling (the topic of Chapter 3) in some
interesting ways. In particular, unless special precautions are taken, syn-
chronization mechanisms can subvert priority scheduling, allowing a low-
priority thread to run while a high-priority thread waits. Therefore, in
Section 4.8, I will briefly consider the interactions between synchronization
and scheduling, as well as what can be done to tame them.

Thread A
waits for

waits for

Thread B

Figure 4.1: Deadlock results when threads wait for one another in a complete
cycle. In this simple example, thread A is waiting for thread B, which is
waiting for thread A.
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Although sections 4.7 and 4.8 address the problems of deadlock and
unwanted scheduling interactions, the root cause of these problems is also
worth considering. The underlying problem is that one thread can block
the progress of another thread, which is undesirable even in the absence
of such dramatic symptoms as deadlock. After all, a blocked thread can’t
take advantage of available processing power to produce useful results. Al-
ternative, nonblocking synchronization techniques have become increasingly
important as the number of processor cores in a typical computer system has
grown. Section 4.9 briefly addresses this topic, showing how data structures
can safely support concurrent threads without ever blocking progress.

Finally, I conclude the chapter in Section 4.10 by looking at security
issues related to synchronization. In particular, I show how subtle synchro-
nization bugs, which may nearly never cause a malfunction unless provoked,
can be exploited by an attacker in order to circumvent the system’s normal
security policies. After this concluding section, I provide exercises, program-
ming and exploration projects, and notes.

Despite the wide range of synchronization-related topics I cover in this
chapter, there are two I leave for later chapters. Atomic transactions are
a particularly sophisticated and important synchronization pattern, com-
monly encountered in middleware; therefore, I devote Chapter 5 entirely to
them. Also, explicitly passing a message between threads (for example, via
a network) provides synchronization as well as communication, because the
message cannot be received until after it has been transmitted. Despite this
synchronization role, I chose to address various forms of message passing in
Chapters 9 and 10, the chapters related to communication.

4.2 Races and the Need for Mutual Exclusion

When two or more threads operate on a shared data structure, some very
strange malfunctions can occur if the timing of the threads turns out pre-
cisely so that they interfere with one another. For example, consider the
following code that might appear in a sellTicket procedure (for an event
without assigned seats):

if(seatsRemaining > 0){

dispenseTicket();

seatsRemaining = seatsRemaining - 1;

} else

displaySorrySoldOut();
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On the surface, this code looks like it should never sell more tickets than
seats are available. However, what happens if multiple threads (perhaps
controlling different points of sale) are executing the same code? Most of
the time, all will be well. Even if two people try to buy tickets at what
humans perceive as the same moment, on the time scale of the computer,
probably one will happen first and the other second, as shown in Figure 4.2.
In that case, all is well. However, once in a blue moon, the timing may be
exactly wrong, and the following scenario results, as shown in Figure 4.3.

1. Thread A checks seatsRemaining > 0. Because seatsRemaining is
1, the test succeeds. Thread A will take the first branch of the if.

2. Thread B checks seatsRemaining > 0. Because seatsRemaining is
1, the test succeeds. Thread B will take the first branch of the if.

3. Thread A dispenses a ticket and decreases seatsRemaining to 0.

4. Thread B dispenses a ticket and decreases seatsRemaining to −1.

5. One customer winds up sitting on the lap of another.

Of course, there are plenty of other equally unlikely scenarios that result
in misbehavior. In Exercise 4.1, you can come up with a scenario where,
starting with seatsRemaining being 2, two threads each dispense a ticket,
but seatsRemaining is left as 1 rather than 0.

These scenarios are examples of races. In a race, two threads use the
same data structure, without any mechanism to ensure only one thread
uses the data structure at a time. If either thread precedes the other, all
is well. However, if the two are interleaved, the program malfunctions.
Generally, the malfunction can be expressed as some invariant property

Thread A Thread B

if(seatsRemaining > 0)

dispenseTicket();

seatsRemaining=seatsRemaining-1;

if(seatsRemaining > 0)...else

displaySorrySoldOut();

Figure 4.2: Even if two humans think they are trying to buy the last ticket
at the same time, chances are good that one’s thread (thread A in this
example) will run before the other’s. Thread B will then correctly discover
that no seats remain.
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Thread A Thread B

if(seatsRemaining > 0)

if(seatsRemaining > 0)

dispenseTicket();

dispenseTicket();

seatsRemaining=seatsRemaining-1;

seatsRemaining=seatsRemaining-1;

Figure 4.3: If threads A and B are interleaved, both can act as though there
were a ticket left to sell, even though only one really exists for the two of
them.

being violated. In the ticket-sales example, the invariant is that the value
of seatsRemaining should be nonnegative and when added to the number
of tickets dispensed should equal the total number of seats. (This invariant
assumes that seatsRemaining was initialized to the total number of seats.)

When an invariant involves more than one variable, a race can result even
if one of the threads only reads the variables, without modifying them. For
example, suppose there are two variables, one recording how many tickets
have been sold and the other recording the amount of cash in the money
drawer. There should be an invariant relation between these: the number
of tickets sold times the price per ticket, plus the amount of starting cash,
should equal the cash on hand. Suppose one thread is in the midst of selling
a ticket. It has updated one of the variables, but not yet the other. If at
exactly that moment another thread chooses to run an audit function, which
inspects the values of the two variables, it will find them in an inconsistent
state.

That inconsistency may not sound so terrible, but what if a similar incon-
sistency occurred in a medical setting, and one variable recorded the drug to
administer, while the other recorded the dose? Can you see how dangerous
an inconsistency could be? Something very much like that happened in a
radiation therapy machine, the Therac-25, with occasionally lethal conse-
quences. (Worse, some patients suffered terrible but not immediately lethal
injuries and lingered for some time in excruciating, intractable pain.)

From the ticket-sales example, you can see that having two threads car-
rying out operations on the same data structure is harmless, as long as there
never are two operations under way at the same time. In other words, the
interleaving of the threads’ execution needs to be at the granularity of com-
plete operations, such as selling a ticket or auditing the cash drawer. When
interleaving the operations, it’s OK if one thread performs several complete
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operations in a row; the threads don’t need to alternate back and forth.
However, each sale or audit should be completed without interruption.

The reason why any interleaving of complete operations is safe is because
each is designed to both rely on the invariant and preserve it. Provided that
you initially construct the data structure in a state where the invariant
holds, any sequence whatsoever of invariant-preserving operations will leave
the invariant intact.

What is needed, then, is a synchronization mechanism that allows one
thread to obtain private access to the data structure before it begins work,
thereby excluding all other threads from operating on that structure. The
conventional metaphor is to say that the thread locks the data structure.
When the thread that locked the structure is done, it unlocks, allowing
another thread to take its turn. Because any thread in the midst of one
of the operations temporarily excludes all the others, this arrangement is
called mutual exclusion. Mutual exclusion establishes the granularity at
which threads may be interleaved by the scheduler.

4.3 Mutexes and Monitors

As you saw in Section 4.2, threads that share data structures need to have
a mechanism for obtaining exclusive access to those structures. A program-
mer can arrange for this exclusive access by creating a special lock object
associated with each shared data structure. The lock can only be locked
by one thread at a time. A thread that has locked the lock is said to hold
the lock, even though that vocabulary has no obvious connection to the
metaphor of real-world locks. If the threads operate on (or even examine)
the data structure only when holding the corresponding lock, this discipline
will prevent races.

To support this form of race prevention, operating systems and middle-
ware generally provide mutual exclusion locks. Because the name mutual
exclusion lock is rather ungainly, something shorter is generally used. Some
programmers simply talk of locks, but that can lead to confusion because
other synchronization mechanisms are also called locks. (For example, I in-
troduce readers/writers locks in Section 4.4.2.) Therefore, the name mutex
has become popular as a shortened form of mutual exclusion lock. In par-
ticular, the POSIX standard refers to mutexes. Therefore, I will use that
name in this book as well.

Section 4.3.1 presents the POSIX application programming interface
(API) for mutexes. Section 4.3.2 presents an alternative, more structured
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interface to mutexes, known as monitors. Finally, Section 4.3.3 shows what
lies behind both of those interfaces by explaining the mechanisms typically
used to implement mutexes.

4.3.1 The Mutex Application Programming Interface

A mutex can be in either of two states: locked (that is, held by some thread),
or unlocked (that is, not held by any thread). Any implementation of mu-
texes must have some way to create a mutex and initialize its state. Con-
ventionally, mutexes are initialized to the unlocked state. As a minimum,
there must be two other operations: one to lock a mutex, and one to unlock
it.

The lock and unlock operations are much less symmetrical than they
sound. The unlock operation can be applied only when the mutex is locked;
this operation does its job and returns, without making the calling thread
wait. The lock operation, on the other hand, can be invoked even when
the lock is already locked. For this reason, the calling thread may need to
wait, as shown in Figure 4.4. When a thread invokes the lock operation on
a mutex, and that mutex is already in the locked state, the thread is made
to wait until another thread has unlocked the mutex. At that point, the
thread that wanted to lock the mutex can resume execution, find the mutex
unlocked, lock it, and proceed.

If more than one thread is trying to lock the same mutex, only one of
them will switch the mutex from unlocked to locked; that thread will be
allowed to proceed. The others will wait until the mutex is again unlocked.
This behavior of the lock operation provides mutual exclusion. For a thread
to proceed past the point where it invokes the lock operation, it must be the
single thread that succeeds in switching the mutex from unlocked to locked.
Until the thread unlocks the mutex, one can say it holds the mutex (that is,

Unlocked Wait for another
thread to unlockLocked

try to lock

finish locking

lock

unlock

Figure 4.4: Locking an unlocked mutex and unlocking a locked one change
the mutex’s state. However, a thread can also try to lock an already-locked
mutex. In this case, the thread waits and acquires the mutex lock when
another thread unlocks it.
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has exclusive rights) and can safely operate on the associated data structure
in a race-free fashion.

This freedom from races exists regardless which one of the waiting threads
is chosen as the one to lock the mutex. However, the question of which thread
goes first may matter for other reasons; I return to it in Section 4.8.2.

Besides the basic operations to initialize a mutex, lock it, and unlock it,
there may be other, less essential, operations as well. For example, there
may be one to test whether a mutex is immediately lockable without waiting,
and then to lock it if it is so. For systems that rely on manual reclamation
of memory, there may also be an operation to destroy a mutex when it will
no longer be used.

Individual operating systems and middleware systems provide mutex
APIs that fit the general pattern I described, with varying details. In order
to see one concrete example of an API, I will present the mutex operations
included in the POSIX standard. Because this is a standard, many different
operating systems provide this API, as well as perhaps other system-specific
APIs.

In the POSIX API, you can declare my_mutex to be a mutex and initialize
it with the default attributes as follows:

pthread_mutex_t my_mutex;

pthread_mutex_init(&my_mutex, 0);

A thread that wants to lock the mutex, operate on the associated data
structure, and then unlock the mutex would do the following (perhaps with
some error-checking added):

pthread_mutex_lock(&my_mutex);

// operate on the protected data structure

pthread_mutex_unlock(&my_mutex);

As an example, Figure 4.5 shows the key procedures from the ticket sales
example, written in C using the POSIX API. When all threads are done
using the mutex (leaving it in the unlocked state), the programmer is ex-
pected to destroy it, so that any underlying memory can be reclaimed. This
is done by executing the following procedure call:

pthread_mutex_destroy(&my_mutex);

POSIX also provides a couple variants on pthread_mutex_lock that are
useful under particular circumstances. One, pthread_mutex_trylock, dif-
fers in that it will never wait to acquire a mutex. Instead, it returns an error
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void sellTicket(){

pthread_mutex_lock(&my_mutex);

if(seatsRemaining > 0){

dispenseTicket();

seatsRemaining = seatsRemaining - 1;

cashOnHand = cashOnHand + PRICE;

} else

displaySorrySoldOut();

pthread_mutex_unlock(&my_mutex);

}

void audit(){

pthread_mutex_lock(&my_mutex);

int revenue = (TOTAL_SEATS - seatsRemaining) * PRICE;

if(cashOnHand != revenue + STARTING_CASH){

printf("Cash fails to match.\n");

exit(1);

}

pthread_mutex_unlock(&my_mutex);

}

Figure 4.5: Each of these procedures begins by locking my mutex and ends by
unlocking it. Therefore, they will never race, even if called from concurrent
threads. Additional code not shown here (perhaps in the main procedure)
would first initialize my mutex.
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code if unable to immediately acquire the lock. The other, pthread_mutex_timedlock,
allows the programmer to specify a maximum amount of time to wait. If
the mutex cannot be acquired within that time, pthread_mutex_timedlock
returns an error code.

Beyond their wide availability, another reason why POSIX mutexes are
worth studying is that the programmer is allowed to choose among several
variants, which provide different answers to two questions about exceptional
circumstances. Other mutex APIs might include one specific answer to these
questions, rather than exposing the full range of possibilities. The questions
at issue are as follows:

• What happens if a thread tries to unlock a mutex that is unlocked, or
that was locked by a different thread?

• What happens if a thread tries to lock a mutex that it already holds?
(Note that if the thread were to wait for itself to unlock the mutex,
this situation would constitute the simplest possible case of a deadlock.
The cycle of waiting threads would consist of a single thread, waiting
for itself.)

The POSIX standard allows the programmer to select from four different
types of mutexes, each of which answers these two questions in a different
way:

PTHREAD MUTEX DEFAULT If a thread tries to lock a mutex it already holds
or unlock one it doesn’t hold, all bets are off as to what will happen.
The programmer has a responsibility never to make either of these
attempts. Different POSIX-compliant systems may behave differently.

PTHREAD MUTEX ERROR CHECK If a thread tries to lock a mutex that it already
holds, or unlock a mutex that it doesn’t hold, the operation returns
an error code.

PTHREAD MUTEX NORMAL If a thread tries to lock a mutex that it already
holds, it goes into a deadlock situation, waiting for itself to unlock
the mutex, just as it would wait for any other thread. If a thread
tries to unlock a mutex that it doesn’t hold, all bets are off; each
POSIX-compliant system is free to respond however it likes.

PTHREAD MUTEX RECURSIVE If a thread tries to unlock a mutex that it doesn’t
hold, the operation returns an error code. If a thread tries to lock a
mutex that it already holds, the system simply increments a count
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of how many times the thread has locked the mutex and allows the
thread to proceed. When the thread invokes the unlock operation, the
counter is decremented, and only when it reaches 0 is the mutex really
unlocked.

If you want to provoke a debate among experts on concurrent program-
ming, ask their opinion of recursive locking, that is, of the mutex behavior
specified by the POSIX option PTHREAD MUTEX RECURSIVE. On the one hand,
recursive locking gets rid of one especially silly class of deadlocks, in which a
thread waits for a mutex it already holds. On the other hand, a programmer
with recursive locking available may not follow as disciplined a development
approach. In particular, the programmer may not keep track of exactly
which locks are held at each point in the program’s execution.

4.3.2 Monitors: A More Structured Interface to Mutexes

Object-oriented programming involves packaging together data structures
with the procedures that operate on them. In this context, mutexes can be
used in a very rigidly structured way:

• All state variables within an object should be kept private, accessible
only to code associated with that object.

• Every object (that might be shared between threads) should contain a
mutex as an additional field, beyond those fields containing the object’s
state.

• Every method of an object (except private ones used internally) should
start by locking that object’s mutex and end by unlocking the mutex
immediately before returning.

If these three rules are followed, then it will be impossible for two threads
to race on the state of an object, because all access to the object’s state will
be protected by the object’s mutex.

Programmers can follow these rules manually, or the programming lan-
guage can provide automatic support for the rules. Automation ensures that
the rules are consistently followed. It also means the source program will
not be cluttered with mutex clichés, and hence will be more readable.

An object that automatically follows the mutex rules is called a moni-
tor. Monitors are found in some programming languages, such as Concurrent
Pascal, that have been used in research settings without becoming commer-
cially popular. In these languages, using monitors can be as simple as using
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the keyword monitor at the beginning of a declaration for a class of objects.
All public methods will then automatically lock and unlock an automatically
supplied mutex. (Monitor languages also support another synchronization
feature, condition variables, which I discuss in Section 4.5.)

Although true monitors have not become popular, the Java programming
language provides a close approximation. To achieve monitor-style synchro-
nization, the Java programmer needs to exercise some self-discipline, but
less than with raw mutexes. More importantly, the resulting Java program
is essentially as uncluttered as a true monitor program would be; all that is
added is one keyword, synchronized, at the declaration of each nonprivate
method.

Each Java object automatically has a mutex associated with it, of the
recursively lockable kind. The programmer can choose to lock any object’s
mutex for the duration of any block of code by using a synchronized state-
ment:

synchronized(someObject){

// the code to do while holding someObject’s mutex

}

Note that in this case, the code need not be operating on the state of
someObject; nor does this code need to be in a method associated with
that object. In other words, the synchronized statement is essentially as
flexible as using raw mutexes, with the one key advantage that locking and
unlocking are automatically paired. This advantage is important, because it
eliminates one big class of programming errors. Programmers often forget to
unlock mutexes under exceptional circumstances. For example, a procedure
may lock a mutex at the beginning and unlock it at the end. However, in
between may come an if statement that can terminate the procedure with
the mutex still locked.

Although the synchronized statement is flexible, typical Java programs
don’t use it much. Instead, programmers add the keyword synchronized

to the declaration of public methods. For example, a TicketVendor class
might follow the outline in Figure 4.6. Marking a method synchronized is
equivalent to wrapping the entire body of that method in a synchronized

statement:

synchronized(this){

// the body

}
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public class TicketVendor {

private int seatsRemaining, cashOnHand;

private static final int PRICE = 1000;

public synchronized void sellTicket(){

if(seatsRemaining > 0){

dispenseTicket();

seatsRemaining = seatsRemaining - 1;

cashOnHand = cashOnHand + PRICE;

} else

displaySorrySoldOut();

}

public synchronized void audit(){

// check seatsRemaining, cashOnHand

}

private void dispenseTicket(){

// ...

}

private void displaySorrySoldOut(){

// ...

}

public TicketVendor(){

// ...

}

}

Figure 4.6: Outline of a monitor-style class in Java
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In other words, a synchronized method on an object will be executed while
holding that object’s mutex. For example, the sellTicket method is syn-
chronized, so if two different threads invoke it, one will be served while the
other waits its turn, because the sellTicket method is implicitly locking a
mutex upon entry and unlocking it upon return, just as was done explicitly
in the POSIX version of Figure 4.5. Similarly, a thread executing the audit

method will need to wait until no ticket sale is in progress, because this
method is also marked synchronized, and so acquires the same mutex.

In order to program in a monitor style in Java, you need to be disciplined
in your use of the private and public keywords (including making all state
private), and you need to mark all the public methods as synchronized.

4.3.3 Underlying Mechanisms for Mutexes

In this subsection, I will show how mutexes typically operate behind the
scenes. I start with a version that functions correctly, but is inefficient, and
then show how to build a more efficient version on top of it, and then a yet
more efficient version on top of that. Keep in mind that I will not throw away
my first two versions: they play a critical role in the final version. For sim-
plicity, all three versions will be of the PTHREAD MUTEX NORMAL kind; a dead-
lock results if a thread tries to lock a mutex it already holds. In Exercise 4.3,
you can figure out the changes needed for PTHREAD MUTEX RECURSIVE.

The three versions of mutex are called the basic spinlock, cache-conscious
spinlock, and queuing mutex, in increasing order of sophistication. The
meaning of these names will become apparent as I explain the functioning
of each kind of mutex. I will start with the basic spinlock.

All modern processor architectures have at least one instruction that
can be used to both change the contents of a memory location and obtain
information about the previous contents of the location. Crucially, these in-
structions are executed atomically, that is, as an indivisible unit that cannot
be broken up by the arrival of an interrupt nor interleaved with the execu-
tion of an instruction on another processor. The details of these instructions
vary; for concreteness, I will use the exchange operation, which atomically
swaps the contents of a register with the contents of a memory location.

Suppose I represent a basic spinlock as a memory location that contains
1 if the mutex is unlocked and 0 if the mutex is locked. The unlock operation
can be trivial: to unlock a mutex, just store 1 into it. The lock operation
is a bit trickier and uses the atomic exchange operation; I can express it in
pseudocode, as shown in Figure 4.7. The key idea here is to keep looping
until the thread succeeds in changing the mutex from 1 to 0. So long as
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to lock mutex:

let temp = 0

repeat

atomically exchange temp and mutex

until temp = 1

Figure 4.7: The basic spinlock version of a mutex is a memory location
storing 1 for unlocked and 0 for locked. Locking the mutex consists of
repeatedly exchanging a register containing 0 with the memory location
until the location is changed from 1 to 0.

some other thread holds the lock, the thread keeps swapping one 0 with
another 0, which does no harm. This process is illustrated in Figure 4.8.

To understand the motivation behind the cache-conscious spinlock, you
need to know a little about cache coherence protocols in multiprocessor
systems. Copies of a given block of memory can reside in several different
processors’ caches, as long as the processors only read from the memory
locations. As soon as one processor wants to write into the cache block,
however, some communication between the caches is necessary so that other
processors don’t read out-of-date values. Most typically, the cache where the
writing occurs invalidates all the other caches’ copies so that it has exclusive
ownership. If one of the other processors now wants to write, the block needs
to be flushed out of the first cache and loaded exclusively into the second.
If the two processors keep alternately writing into the same block, there
will be continual traffic on the memory interconnect as the cache block is
transferred back and forth between the two caches.

This is exactly what will happen with the basic spinlock version of mutex
locking if two threads (on two processors) are both waiting for the same lock.
The atomic exchange instructions on the two processors will both be writing
into the cache block containing the spinlock. Contention for a mutex may not
happen often. When it does, however, the performance will be sufficiently
terrible to motivate an improvement. Cache-conscious spinlocks will use
the same simple approach as basic spinlocks when there is no contention,
but will get rid of the cache coherence traffic while waiting for a contended
mutex.

In order to allow multiple processors to wait for a lock without generating
traffic outside their individual caches, they must be waiting while using only
reads of the mutex. When they see the mutex become unlocked, they then
need to try grabbing it with an atomic exchange. This approach leads to the
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0

exchangeTemp Mutex

1

Operation Result

0

exchangeTemp Mutex

0
Unsuccessful locking
(try again):

Successful locking:

Unlocking:
1

store Mutex

1

0 0

1 0

Temp

Temp

Mutex

Mutex

Mutex

0

Figure 4.8: Unlocking a basic spinlock consists of storing a 1 into it. Locking
it consists of storing a 0 into it using an atomic exchange instruction. The
exchange instruction allows the locking thread to verify that the value in
memory really was changed from 1 to 0. If not, the thread repeats the
attempt.

pseudocode shown in Figure 4.9. Notice that in the common case where the
mutex can be acquired immediately, this version acts just like the original.
Only if the attempt to acquire the mutex fails is anything done differently.
Even then, the mutex will eventually be acquired the same way as before.

The two versions of mutexes that I have presented thus far share one key
property, which explains why both are called spinlocks. They both engage
in busy waiting if the mutex is not immediately available. Recall from my
discussion of scheduling that busy waiting means waiting by continually
executing instructions that check for the awaited event. A mutex that uses
busy waiting is called a spinlock. Even fancier versions of spinlocks exist, as
described in the end-of-chapter notes.

The alternative to busy waiting is to notify the operating system that the
thread needs to wait. The operating system can then change the thread’s
state to waiting and move it to a wait queue, where it is not eligible for
time on the processor. Instead, the scheduler will use the processor to run
other threads. When the mutex is unlocked, the waiting thread can be made
runnable again. Because this form of mutex makes use of a wait queue, it
is called a queuing mutex.

Spinlocks are inefficient, for the same reason as any busy waiting is
inefficient. The thread does not make any more headway, no matter how
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to lock mutex:

let temp = 0

repeat

atomically exchange temp and mutex

if temp = 0 then

while mutex = 0

do nothing

until temp = 1

Figure 4.9: Cache-conscious spinlocks are represented the same way as basic
spinlocks, using a single memory location. However, the lock operation now
uses ordinary read instructions in place of most of the atomic exchanges
while waiting for the mutex to be unlocked.

many times it spins around its loop. Therefore, using the processor for a
different thread would benefit that other thread without harming the waiting
one.

However, there is one flaw in this argument. There is some overhead
cost for notifying the operating system of the desire to wait, changing the
thread’s state, and doing a context switch, with the attendant loss of cache
locality. Thus, in a situation where the spinlock needs to spin only briefly
before finding the mutex unlocked, the thread might actually waste less time
busy waiting than it would waste getting out of other threads’ ways. The
relative efficiency of spinlocks and queuing mutexes depends on how long
the thread needs to wait before the mutex becomes available.

For this reason, spinlocks are appropriate to use for mutexes that are
held only very briefly, and hence should be quickly acquirable. As an ex-
ample, the Linux kernel uses spinlocks to protect many of its internal data
structures during the brief operations on them. For example, I mentioned
that the scheduler keeps the runnable threads in a run queue. Whenever
the scheduler wants to insert a thread into this data structure, or otherwise
operate on it, it locks a spinlock, does the brief operation, and then unlocks
the spinlock.

Queuing mutexes are still needed for those cases where a thread might
hold a mutex a long time—long enough that other contenders shouldn’t
busy wait. These mutexes will be more complex. Rather than being stored
in a single memory location (as with spinlocks), each mutex will have three
components:
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• A memory location used to record the mutex’s state, 1 for unlocked
or 0 for locked.

• A list of threads waiting to acquire the mutex. This list is what allows
the scheduler to place the threads in a waiting state, instead of busy
waiting. Using the terminology of Chapter 3, this list is a wait queue.

• A cache-conscious spinlock, used to protect against races in operations
on the mutex itself.

In my pseudocode, I will refer to these three components as mutex.state,
mutex.waiters, and mutex.spinlock, respectively.

Under these assumptions, the locking and unlocking operations can be
performed as shown in the pseudocode of Figures 4.10 and 4.11. Figures 4.12
and 4.13 illustrate the functioning of these operations. One important
feature to note in this mutex design concerns what happens when a thread
performs the unlock operation on a mutex that has one or more threads in
the waiters list. As you can see in Figure 4.11, the mutex’s state variable
is not changed from the locked state (0) to the unlocked state (1). Instead,
the mutex is left locked, and one of the waiting threads is woken up. In
other words, the locked mutex is passed directly from one thread to another,
without ever really being unlocked. In Section 4.8.2, I will explain how this
design is partially responsible for the so-called convoy phenomenon, which I
describe there. In that same section, I will also present an alternative design
for mutexes that puts the mutex into the unlocked state.

4.4 Other Synchronization Patterns

Recall that synchronization refers to any form of control over the relative
timing of two or more threads. As such, synchronization includes more than
just mutual exclusion; a programmer may want to impose some restriction
on relative timing other than the rule of one thread at a time. In this
section, I present three other patterns of synchronization that crop up over
and over again in many applications: bounded buffers, readers/writers locks,
and barriers. Sections 4.4.1 through 4.4.3 will just describe the desired
synchronization; Sections 4.5 and 4.6 show techniques that can be used to
achieve the synchronization.
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to lock mutex:

lock mutex.spinlock (in cache-conscious fashion)

if mutex.state = 1 then

let mutex.state = 0

unlock mutex.spinlock

else

add current thread to mutex.waiters

remove current thread from runnable threads

unlock mutex.spinlock

yield to a runnable thread

Figure 4.10: An attempt to lock a queuing mutex that is already in the
locked state causes the thread to join the wait queue, mutex.waiters.

to unlock mutex:

lock mutex.spinlock (in cache-conscious fashion)

if mutex.waiters is empty then

let mutex.state = 1

else

move one thread from mutex.waiters to runnable

unlock mutex.spinlock

Figure 4.11: If there is any waiting thread, the unlock operation on a queuing
mutex causes a thread to become runnable. Note that in this case, the
mutex is left in the locked state; effectively, the locked mutex is being passed
directly from one thread to another.
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Thread

locks

Mutex

State: 1

Waiters:

Thread
Mutex

State: 0

Waiters:

Thread

locks

Mutex

State: 0

Waiters:

Mutex

Thread

State: 0

Waiters:

Operation Result

Figure 4.12: Locking a queuing mutex that is unlocked simply changes the
mutex’s state. Locking an already-locked queuing mutex, on the other hand,
puts the thread into the waiters list.
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Waiters:

State: 1

Waiters:

State: 0

Waiters:

Figure 4.13: Unlocking a queuing mutex with no waiting threads simply
changes the mutex’s state. Unlocking a queuing mutex with waiting threads,
on the other hand, leaves the state set to locked but causes one of the waiting
threads to start running again, having acquired the lock.
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4.4.1 Bounded Buffers

Often, two threads are linked together in a processing pipeline. That is, the
first thread produces a sequence of values that are consumed by the second
thread. For example, the first thread may be extracting all the textual words
from a document (by skipping over the formatting codes) and passing those
words to a second thread that speaks the words aloud.

One simple way to organize the processing would be by strict alternation
between the producing and consuming threads. In the preceding example,
the first thread would extract a word, and then wait while the second thread
converted it into sound. The second thread would then wait while the first
thread extracted the next word. However, this approach doesn’t yield any
concurrency: only one thread is runnable at a time. This lack of concur-
rency may result in suboptimal performance if the computer system has two
processors, or if one of the threads spends a lot of time waiting for an I/O
device.

Instead, consider running the producer and the consumer concurrently.
Every time the producer has a new value ready, the producer will store
the value into an intermediate storage area, called a buffer. Every time the
consumer is ready for the next value, it will retrieve the value from the buffer.
Under normal circumstances, each can operate at its own pace. However,
if the consumer goes to the buffer to retrieve a value and finds the buffer
empty, the consumer will need to wait for the producer to catch up. Also,
if you want to limit the size of the buffer (that is, to use a bounded buffer),
you need to make the producer wait if it gets too far ahead of the consumer
and fills the buffer. Putting these two synchronization restrictions in place
ensures that over the long haul, the rate of the two threads will match up,
although over the short term, either may run faster than the other.

You should be familiar with the bounded buffer pattern from businesses
in the real world. For example, the cooks at a fast-food restaurant fry burg-
ers concurrently with the cashiers selling them. In between the two is a
bounded buffer of already-cooked burgers. The exact number of burgers in
the buffer will grow or shrink somewhat as one group of workers is tem-
porarily a little faster than the other. Only under extreme circumstances
does one group of workers have to wait for the other. Figure 4.14 illustrates
a situation where no one needs to wait.

One easy place to see bounded buffers at work in computer systems is the
pipe feature built into UNIX-family operating systems, including Linux and
Mac OS X. (Microsoft Windows also now has an analogous feature.) Pipes
allow the output produced by one process to serve as input for another. For
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Cook

Bounded
buffer of
burgers

Cashier
Grill

Figure 4.14: A cook fries burgers and places them in a bounded buffer,
queued up for later sale. A cashier takes burgers from the buffer to sell. If
there are none available, the cashier waits. Similarly, if the buffer area is
full, the cook takes a break from frying burgers.

example, on a Mac OS X system, you could open a terminal window with a
shell in it and give the following command:

ls | say

This runs two programs concurrently. The first, ls, lists the files in your
current directory. The second one, say, converts its textual input into speech
and plays it over the computer’s speakers. In the shell command, the vertical
bar character (|) indicates the pipe from the first program to the second.
The net result is a spoken listing of your files.

A more mundane version of this example works not only on Mac OS X,
but also on other UNIX-family systems such as Linux:

ls | tr a-z A-Z

Again, this runs two programs concurrently. This time the second one, tr,
copies characters from its input to its output, with some changes (transliter-
ations) along the way; in this case, replacing lowercase letters a-z with the
corresponding uppercase letters A-Z. The net result is an uppercase listing
of your files. The file listing may get ahead of the transliteration, as long
as it doesn’t overflow a buffer the operating system provides for the pipe.
Once there is a backlog of listed files in the buffer, the transliteration can
run as fast as it wants until it exhausts that backlog.
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4.4.2 Readers/Writers Locks

My next example of a synchronization pattern is actually quite similar to
mutual exclusion. Recall that in the ticket-sales example, the audit function
needed to acquire the mutex, even though auditing is a read-only operation,
in order to make sure that the audit read a consistent combination of state
variables. That design achieved correctness, but at the cost of needlessly
limiting concurrency: it prevented two audits from being underway at the
same time, even though two (or more) read-only operations cannot possibly
interfere with each other. My goal now is to rectify that problem.

A readers/writers lock is much like a mutex, except that when a thread
locks the lock, it specifies whether it is planning to do any writing to the
protected data structure or only reading from it. Just as with a mutex,
the lock operation may not immediately complete; instead, it waits until
such time as the lock can be acquired. The difference is that any number of
readers can hold the lock at the same time, as shown in Figure 4.15; they
will not wait for each other. A reader will wait, however, if a writer holds
the lock. A writer will wait if the lock is held by any other thread, whether
by another writer or by one or more readers.

Readers/writers locks are particularly valuable in situations where some
of the read-only operations are time consuming, as when reading a file stored
on disk. This is especially true if many readers are expected. The choice
between a mutex and a readers/writers lock is a performance trade-off.
Because the mutex is simpler, it has lower overhead. However, the read-
ers/writers lock may pay for its overhead by allowing more concurrency.

One interesting design question arises if a readers/writers lock is held by
one or more readers and has one or more writers waiting. Suppose a new
reader tries to acquire the lock. Should it be allowed to, or should it be
forced to wait until after the writers? On the surface, there seems to be no
reason for the reader to wait, because it can coexist with the existing readers,
thereby achieving greater concurrency. The problem is that an overlapping
succession of readers can keep the writers waiting arbitrarily long. The
writers could wind up waiting even when the only remaining readers arrived
long after the writers did. This is a form of starvation, in that a thread is
unfairly prevented from running by other threads. To prevent this particular
kind of starvation, some versions of readers/writers locks make new readers
wait until after the waiting writers.

In Section 4.5, you will learn how you could build readers/writers locks
from more primitive synchronization mechanisms. However, because read-
ers/writers locks are so generally useful, they are already provided by many
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Figure 4.15: A readers/writers lock can be held either by any number of
readers or by one writer. When the lock is held by readers, all the reader
threads can read the protected data structure concurrently.

systems, so you may never actually have to build them yourself. The POSIX
standard, for example, includes readers/writers locks with procedures such
as pthread_rwlock_init, pthread_rwlock_rdlock, pthread_rwlock_wrlock,
and pthread_rwlock_unlock. The POSIX standard leaves it up to each in-
dividual system how to prioritize new readers versus waiting writers.

The POSIX standard also includes a more specialized form of read-
ers/writers locks specifically associated with files. This reflects my earlier
comment that readers/writers locking is especially valuable when reading
may be time consuming, as with a file stored on disk. In the POSIX stan-
dard, file locks are available only through the complex fcntl procedure.
However, most UNIX-family operating systems also provide a simpler inter-
face, flock.

4.4.3 Barriers

Barrier synchronization is the last common synchronization pattern I will
discuss. Barriers are most commonly used in programs that do large-scale
numerical calculations for scientific or engineering applications, such as sim-
ulating ocean currents. However, they may also crop up in other applica-
tions, as long as there is a requirement for all threads in a group to finish one
phase of the computation before any of them moves on to the next phase.
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In scientific computations, the threads are often dividing up the processing
of a large matrix. For example, ten threads may each process 200 rows
of a 2000-row matrix. The requirement for all threads to finish one phase
of processing before starting the next comes from the fact that the overall
computation is a sequence of matrix operations; parallel processing occurs
only within each matrix operation.

When a barrier is created (initialized), the programmer specifies how
many threads will be sharing it. Each of the threads completes the first phase
of the computation and then invokes the barrier’s wait operation. For most
of the threads, the wait operation does not immediately return; therefore,
the thread calling it cannot immediately proceed. The one exception is
whichever thread is the last to call the wait operation. The barrier can tell
which thread is the last one, because the programmer specified how many
threads there are. When this last thread invokes the wait operation, the
wait operation immediately returns. Moreover, all the other waiting threads
finally have their wait operations also return, as illustrated in Figure 4.16.
Thus, they can now all proceed on to the second phase of the computation.
Typically, the same barrier can then be reused between the second and third
phases, and so forth. (In other words, the barrier reinitializes its state once
it releases all the waiting threads.)

Just as with readers/writers locks, you will see how barriers can be de-
fined in terms of more general synchronization mechanisms. However, once
again there is little reason to do so in practice, because barriers are provided
as part of POSIX and other widely available APIs.

4.5 Condition Variables

In order to solve synchronization problems, such as the three described in
Section 4.4, you need some mechanism that allows a thread to wait until
circumstances are appropriate for it to proceed. A producer may need to
wait for buffer space, or a consumer may need to wait for data. A reader may
need to wait until a writer has unlocked, or a writer may need to wait for
the last reader to unlock. A thread that has reached a barrier may need to
wait for all the other threads to do so. Each situation has its own condition
for which a thread must wait, and there are many other application-specific
conditions besides. (A video playback that has been paused might wait until
the user presses the pause button again.)

All these examples can be handled by using condition variables, a syn-
chronization mechanism that works in partnership with monitors or with
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Thread A

wait
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wait

wait

Thread D

wait — all four start again

Figure 4.16: A barrier is created for a specific number of threads. In this
case, there are four. When the last of those threads invokes the wait opera-
tion, all the waiting threads in the group start running again.

mutexes used in the style of monitors. There are two basic operations on
a condition variable: wait and notify. (Some systems use the name signal
instead of notify.) A thread that finds circumstances not to its liking exe-
cutes the wait operation and thereby goes to sleep until such time as another
thread invokes the notify operation. For example, in a bounded buffer, the
producer might wait on a condition variable if it finds the buffer full. The
consumer, upon freeing up some space in the buffer, would invoke the notify
operation on that condition variable.

Before delving into all the important details and variants, a concrete ex-
ample may be helpful. Figure 4.17 shows the Java code for a BoundedBuffer

class.
Before I explain how this example works, and then return to a more

general discussion of condition variables, you should take a moment to con-
sider how you would test such a class. First, it might help to reduce the
size of the buffer, so that all qualitatively different situations can be tested
more quickly. Second, you need a test program that has multiple threads
doing insertions and retrievals, with some way to see the difference between
when each operation is started and when it completes. In the case of the
retrievals, you will also need to see that the retrieved values are correct.
Designing such a test program is surprisingly interesting; you can have this
experience in Programming Project 4.5.

In Java, each object has a single condition variable automatically associ-
ated with it, just as it has a mutex. The wait method waits on the object’s
condition variable, and the notifyAll method wakes up all threads waiting
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public class BoundedBuffer {

private Object[] buffer = new Object[20]; // arbitrary size

private int numOccupied = 0;

private int firstOccupied = 0;

/* invariant: 0 <= numOccupied <= buffer.length

0 <= firstOccupied < buffer.length

buffer[(firstOccupied + i) % buffer.length]

contains the (i+1)th oldest entry,

for all i such that 0 <= i < numOccupied */

public synchronized void insert(Object o)

throws InterruptedException

{

while(numOccupied == buffer.length)

// wait for space

wait();

buffer[(firstOccupied + numOccupied) % buffer.length] = o;

numOccupied++;

// in case any retrieves are waiting for data, wake them

notifyAll();

}

public synchronized Object retrieve()

throws InterruptedException

{

while(numOccupied == 0)

// wait for data

wait();

Object retrieved = buffer[firstOccupied];

buffer[firstOccupied] = null; // may help garbage collector

firstOccupied = (firstOccupied + 1) % buffer.length;

numOccupied--;

// in case any inserts are waiting for space, wake them

notifyAll();

return retrieved;

}

}

Figure 4.17: BoundedBuffer class using monitors and condition variables
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on the object’s condition variable. Both of these methods need to be called
by a thread that holds the object’s mutex. In my BoundedBuffer example,
I ensured this in a straightforward way by using wait and notifyAll inside
methods that are marked synchronized.

Having seen that wait and notifyAll need to be called with the mutex
held, you may spot a problem. If a waiting thread holds the mutex, there
will be no way for any other thread to acquire the mutex, and thus be able
to call notifyAll. Until you learn the rest of the story, it seems as though
any thread that invokes wait is doomed to eternal waiting.

The solution to this dilemma is as follows. When a thread invokes the
wait operation, it must hold the associated mutex. However, the wait op-
eration releases the mutex before putting the thread into its waiting state.
That way, the mutex is available to a potential waker. When the waiting
thread is awoken, it reacquires the mutex before the wait operation returns.
(In the case of recursive mutexes, as used in Java, the awakening thread
reacquires the mutex with the same lock count as before, so that it can still
do just as many unlock operations.)

The fact that a waiting thread temporarily releases the mutex helps
explain two features of the BoundedBuffer example. First, the waiting is
done at the very beginning of the methods. This ensures that the invariant
is still intact when the mutex is released. (More generally, the waiting could
happen later, as long as no state variables have been updated, or even as
long as they have been put back into an invariant-respecting state.) Second,
the waiting is done in a loop; only when the waited-for condition has been
verified to hold does the method move on to its real work. The loop is
essential because an awoken thread needs to reacquire the mutex, contending
with any other threads that are also trying to acquire the mutex. There is
no guarantee that the awoken thread will get the mutex first. As such, there
is no guarantee what state it will find; it may need to wait again.

When a waiting thread releases the mutex in order to wait on the con-
dition variable, these two actions are done indivisibly. There is no way
another thread can acquire the mutex before the first thread has started
waiting on the condition variable. This ensures no other thread will do a
notify operation until after the thread that wants to wait is actually waiting.

In addition to waiting for appropriate conditions at the top of each
method, I have invoked notifyAll at the end of each method. This po-
sition is less crucial, because the notifyAll method does not release the
mutex. The calling thread continues to hold the mutex until it reaches the
end of the synchronized method. Because an awoken thread needs to reac-
quire the mutex, it will not be able to make any headway until the notifying
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method finishes, regardless of where in that method the notification is done.
One early version of monitors with condition variables (as described

by Hoare) used a different approach. The notify operation immediately
transferred the mutex to the awoken thread, with no contention from other
waiting threads. The thread performing the notify operation then waited
until it received the mutex back from the awoken thread. Today, however,
the version I described previously seems to be dominant. In particular, it is
used not only in Java, but also in the POSIX API.

The BoundedBuffer code in Figure 4.17 takes a very aggressive ap-
proach to notifying waiting threads: at the end of any operation all waiting
threads are woken using notifyAll. This is a very safe approach; if the
BoundedBuffer’s state was changed in a way of interest to any thread, that
thread will be sure to notice. Other threads that don’t care can simply go
back to waiting. However, the program’s efficiency may be improved some-
what by reducing the amount of notification done. Remember, though, that
correctness should always come first, with optimization later, if at all. Be-
fore optimizing, check whether the simple, correct version actually performs
inadequately.

There are two approaches to reducing notification. One is to put the
notifyAll inside an if statement, so that it is done only under some cir-
cumstances, rather than unconditionally. In particular, producers should be
waiting only if the buffer is full, and consumers should be waiting only if
the buffer is empty. Therefore, the only times when notification is needed
are when inserting into an empty buffer or retrieving from a full buffer. In
Programming Project 4.6, you can modify the code to reflect this and test
that it still works.

The other approach to reducing notification is to use the notify method
in place of notifyAll. This way, only a single waiting thread is awoken,
rather than all waiting threads. Remember that optimization should be
considered only if the straightforward version performs inadequately. This
cautious attitude is appropriate because programmers find it rather tricky
to reason about whether notify will suffice. As such, this optimization is
quite error-prone. In order to verify that the change from notifyAll to
notify is correct, you need to check two things:

1. There is no danger of waking too few threads. Either you have some
way to know that only one is waiting, or you know that only one would
be able to proceed, with the others looping back to waiting.

2. There is no danger of waking the wrong thread. Either you have some
way to know that only one is waiting, or you know that all are equally
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able to proceed. If there is any thread which could proceed if it got the
mutex first, then all threads have that property. For example, if all the
waiting threads are executing the identical while loop, this condition
will be satisfied.

In Exercise 4.4, you can show that these two conditions do not hold for
the BoundedBuffer example: replacing notifyAll by notify would not
be safe in this case. This is true even if the notification operation is done
unconditionally, rather than inside an if statement.

One limitation of Java is that each object has only a single condition
variable. In the BoundedBuffer example, any thread waits on that one con-
dition variable, whether it is waiting for space in the insert method or for
data in the retrieve method. In a system which allows multiple condition
variables to be associated with the same monitor (or mutex), you could use
two different condition variables. That would allow you to specifically notify
a thread waiting for space (or one waiting for data).

The POSIX API allows multiple condition variables per mutex. In Pro-
gramming Project 4.7 you can use this feature to rewrite the BoundedBuffer
example with two separate condition variables, one used to wait for space
and the other used to wait for data.

POSIX condition variables are initialized with pthread_cond_init in-
dependent of any particular mutex; the mutex is instead passed as an ar-
gument to pthread_cond_wait, along with the condition variable being
waited on. This is a somewhat error-prone arrangement, because all con-
current waiters need to pass in the same mutex. The operations corre-
sponding to notify and notifyAll are called pthread_cond_signal and
pthread_cond_broadcast. The API allows a thread to invoke pthread_

cond_signal or pthread_cond_broadcast without holding a corresponding
mutex, but using this flexibility without introducing a race bug is difficult.

The same technique I illustrated with BoundedBuffer can be applied
equally well for readers/writers locks or barriers; I leave these as Program-
ming Projects 4.8 and 4.11. More importantly, the same technique will also
work for application-specific synchronization needs. For example, a video
player might have a state variable that indicates whether the player is cur-
rently paused. The playback thread checks that variable before displaying
each frame, and if paused, waits on a condition variable. The user-interface
thread sets the variable in response to the user pressing the pause button.
When the user interface puts the variable into the unpaused state, it does a
notify operation on the condition variable. You can develop an application
analogous to this in Programming Project 4.3.
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4.6 Semaphores

You have seen that monitors with condition variables are quite general and
can be used to synthesize other more special-purpose synchronization mech-
anisms, such as readers/writers locks. Another synchronization mechanism
with the same generality is the semaphore. For most purposes, semaphores
are less natural, resulting in more error-prone code. In those applications
where they are natural (for example, bounded buffers), they result in very
succinct, clear code. That is probably not the main reason for their con-
tinued use, however. Instead, they seem to be hanging on largely out of
historical inertia, having gotten a seven- to nine-year head start over moni-
tors. (Semaphores date to 1965, as opposed to the early 1970s for monitors.)

A semaphore is essentially an unsigned integer variable, that is, a variable
that can take on only nonnegative integer values. However, semaphores may
not be freely operated on with arbitrary arithmetic. Instead, only three
operations are allowed:

• At the time the semaphore is created, it may be initialized to any
nonnegative integer of the programmer’s choice.

• A semaphore may be increased by 1. The operation to do this is
generally called either release, up, or V. The letter V is short for
a Dutch word that made sense to Dijkstra, the 1965 originator of
semaphores. I will use release.

• A semaphore may be decreased by 1. The operation to do this is
frequently called either acquire, down, or P. Again, P is a Dutch ab-
breviation. I will use acquire. Because the semaphore’s value must
stay nonnegative, the thread performing an acquire operation waits
if the value is 0. Only once another thread has performed a release

operation to make the value positive does the waiting thread continue
with its acquire operation.

One common use for semaphores is as mutexes. If a semaphore is ini-
tialized to 1, it can serve as a mutex, with acquire as the locking operation
and release as the unlocking operation. Assuming that locking and un-
locking are properly paired, the semaphore will only ever have the values 0
and 1. When it is locked, the value will be 0, and any further attempt to
lock it (using acquire) will be forced to wait. When it is is unlocked, the
value will be 1, and locking can proceed. Note, however, that semaphores
used in this limited way have no advantage over mutexes. Moreover, if a
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program bug results in an attempt to unlock an already unlocked mutex,
a special-purpose mutex could signal the error, whereas a general-purpose
semaphore will simply increase to 2, likely causing nasty behavior later when
two threads are both allowed to execute acquire.

A better use for semaphores is for keeping track of the available quantity
of some resource, such as free spaces or data values in a bounded buffer.
Whenever a thread creates a unit of the resource, it increases the semaphore.
Whenever a thread wishes to consume a unit of the resource, it first does an
acquire operation on the semaphore. This both forces the thread to wait
until at least one unit of the resource is available and stakes the thread’s
claim to that unit.

Following this pattern, the BoundedBuffer class can be rewritten to use
semaphores, as shown in Figure 4.18. This uses the Semaphore class from one
of the packages of the Java API, java.util.concurrent. In Programming
Project 4.12, you can instead write your own Semaphore class using Java’s
built-in mutexes and condition variables.

In order to show semaphores in the best possible light, I also moved
away from using an array to store the buffer. Instead, I used the method
synchronizedList to create a thread-safe list for the buffer. Behind the
scenes, Java’s monitor mechanism with synchronized (which was explained
in Section 4.3.2) ensures mutual exclusion for methods on the resulting list;
in particular, add and remove are executed under mutual exclusion on the
shared buffer to prevent races that could otherwise lead to corruption of
the buffer’s underlying data structure. If, in Programming Project 4.13,
you try rewriting this example to use an array (as in Figure 4.17), you
will discover two blemishes. First, you will need the numOccupied integer
variable, as in Figure 4.17. This duplicates the information contained in
occupiedSem, simply in a different form. Second, you will need to introduce
explicit mutex synchronization with synchronized statements around the
code that updates the nonsemaphore state variables. With those complica-
tions, semaphores lose some of their charm. However, by using a thread-safe
list, I hid the extra complexity.

4.7 Deadlock

In Chapter 2, I introduced concurrency as a way to solve problems of re-
sponsiveness and throughput. Unfortunately, concurrency created its own
problem—races. Therefore, I introduced synchronization to solve the prob-
lem of races. The obvious question is, what new problems arise from syn-
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import java.util.concurrent.Semaphore;

public class BoundedBuffer {

private java.util.List<Object> buffer =

java.util.Collections.synchronizedList

(new java.util.LinkedList<Object>());

private static final int SIZE = 20; // arbitrary

private Semaphore occupiedSem = new Semaphore(0);

private Semaphore freeSem = new Semaphore(SIZE);

/* invariant: occupiedSem + freeSem = SIZE

buffer.size() = occupiedSem

buffer contains entries from oldest to youngest */

public void insert(Object o) throws InterruptedException{

freeSem.acquire();

buffer.add(o);

occupiedSem.release();

}

public Object retrieve() throws InterruptedException{

occupiedSem.acquire();

Object retrieved = buffer.remove(0);

freeSem.release();

return retrieved;

}

}

Figure 4.18: Alternative BoundedBuffer class, using semaphores
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chronization? One easy answer is that synchronization has reintroduced the
original responsiveness and throughput problems to some lesser degree, be-
cause synchronization reduces concurrency. However, as you will see in this
section, synchronization also creates an entirely new problem, and one that
is potentially more serious. Section 4.7.1 explains this problem, known as
deadlock, whereby threads can wind up permanently waiting. Sections 4.7.2
through 4.7.4 explain three different solutions to the problem.

4.7.1 The Deadlock Problem

To illustrate what a deadlock is, and how one can arise, consider a highly
simplified system for keeping bank accounts. Suppose each account is an
object with two components: a mutex and a current balance. A procedure
for transferring money from one account to another might look as follows,
in pseudocode:

to transfer amount from sourceAccount to destinationAccount:

lock sourceAccount.mutex

lock destinationAccount.mutex

sourceAccount.balance = sourceAccount.balance - amount

destinationAccount.balance = destinationAccount.balance + amount

unlock sourceAccount.mutex

unlock destinationAccount.mutex

Suppose I am feeling generous and transfer $100 from myAccount to
yourAccount. Suppose you are feeling even more generous and transfer
$250 from yourAccount to myAccount. With any luck, at the end I should
be $150 richer and you should be $150 poorer. If either transfer request is
completed before the other starts, this is exactly what happens. However,
what if the two execute concurrently?

The mutexes prevent any race condition, so you can be sure that the
accounts are not left in an inconsistent state. Note that we have locked
both accounts for the entire duration of the transfer, rather than locking
each only long enough to update its balance. That way, an auditor can’t see
an alarming situation where money has disappeared from one account but
not yet appeared in the other account.

However, even though there is no race, not even with an auditor, all is
not well. Consider the following sequence of events:

1. I lock the source account of my transfer to you. That is, I lock
myAccount.mutex.
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2. You lock the source account of your transfer to me. That is, you lock
yourAccount.mutex.

3. I try to lock the destination account of my transfer to you. That is, I
try to lock yourAccount.mutex. Because you already hold this mutex,
I am forced to wait.

4. You try to lock the destination account of your transfer to me. That is,
you try to lock myAccount.mutex. Because I already hold this mutex,
you are forced to wait.

At this point, each of us is waiting for the other: we have deadlocked.
More generally, a deadlock exists whenever there is a cycle of threads,

each waiting for some resource held by the next, under the following defining
conditions:

1. Threads hold resources exclusively (“mutual exclusion”).

2. Threads hold some resources while waiting for additional ones (“wait
for”).

3. Resources cannot be removed from threads forcibly (“no preemption”).

4. Threads wait in a circular chain such that each thread holds resources
that are requested by the next thread in the chain.

In the example, there are two threads and the resources involved are two
mutexes. Clearly, mutexes are held exclusively (condition (1)), each thread
holds one mutex while waiting for another one (condition (2)), mutexes are
never removed by the operating system but threads need to release them on
their own (condition (3)), and both threads wait for each other, forming the
shortest circular chain possible (condition (4)).

Although deadlocks can involve other resources as well (consider read-
ers/writers locks, for example), I will focus on mutexes for simplicity.

As an example of a deadlock involving more than two threads, consider
generalizing the preceding scenario of transferring money between bank ac-
counts. Suppose, for example, that there are five bank accounts, numbered
0 through 4. There are also five threads. Each thread is trying to transfer
money from one account to another, as shown in Figure 4.19. As before, each
transfer involves locking the source and destination accounts. Once again,
the threads can deadlock if each one locks the source account first, and then
tries to lock the destination account. This situation is much more famous
when dressed up as the dining philosophers problem, which I describe next.
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Thread Source Account Destination Account

0 0 1

1 1 2

2 2 3

3 3 4

4 4 0

Figure 4.19: Each of five threads tries to transfer money from a source
account to a destination account. If each thread locks its source account,
none will be able to proceed by locking its destination account.

In 1972, Dijkstra wrote about a group of five philosophers, each of whom
had a place at a round dining table, where they ate a particularly difficult
kind of spaghetti that required two forks. There were five forks at the
table, one between each pair of adjacent plates, as shown in Figure 4.20.
Apparently Dijkstra was not concerned with communicable diseases such as
mononucleosis, because he thought it was OK for the philosophers seated to
the left and right of a particular fork to share it. Instead, he was concerned
with the possibility of deadlock. If all five philosophers start by picking up
their respective left-hand forks and then wait for their right-hand forks to
become available, they wind up deadlocked. In Exploration Project 4.2, you
can try out a computer simulation of the dining philosophers. In that same
Exploration Project, you can also apply the deadlock prevention approach
described in Section 4.7.2 to the dining philosophers problem.

Deadlocks are usually quite rare even if no special attempt is made to
prevent them, because most locks are not held very long. Thus, the window
of opportunity for deadlocking is quite narrow, and, like races, the timing
must be exactly wrong. For a very noncritical system, one might choose
to ignore the possibility of deadlocks. Even if the system needs the occa-
sional reboot due to deadlocking, other malfunctions will probably be more
common. Nonetheless, you should learn some options for dealing with dead-
locks, both because some systems are critical and because ignoring a known
problem is unprofessional. In Sections 4.7.2 through 4.7.4, I explain three
of the most practical ways to address the threat of deadlocks.

4.7.2 Deadlock Prevention Through Resource Ordering

The ideal way to cope with deadlocks is to prevent them from happening.
In principle, deadlock prevention aims to ensure that at least one of the four
defining conditions is not satisfied. One very practical technique for dead-



4.7. DEADLOCK 129

0

1

2 3

4

Figure 4.20: Five philosophers, numbered 0 through 4, have places around
a circular dining table. There is a fork between each pair of adjacent places.
When each philosopher tries to pick up two forks, one at a time, deadlock
can result.

lock prevention targets the circular wait situation characterized by condition
(4) by imposing a linear order in which resources need to be locked. This
technique can be illustrated through the example of transferring money be-
tween two bank accounts. Each of the two accounts is stored somewhere
in the computer’s memory, which can be specified through a numerical ad-
dress. I will use the notation min(account1, account2) to mean whichever
of the two account objects occurs at the lower address (earlier in memory).
Similarly, I will use max(account1, account2) to mean whichever occurs
at the higher address. I can use this ordering on the accounts (or any other
ordering, such as by account number) to make a deadlock-free transfer pro-
cedure:

to transfer amount from sourceAccount to destinationAccount:

lock min(sourceAccount, destinationAccount).mutex

lock max(sourceAccount, destinationAccount).mutex

sourceAccount.balance = sourceAccount.balance - amount

destinationAccount.balance = destinationAccount.balance + amount

unlock sourceAccount.mutex

unlock destinationAccount.mutex

Now if I try transferring money to you, and you try transferring money
to me, we will both lock the two accounts’ mutexes in the same order. No
deadlock is possible; one transfer will run to completion, and then the other.

The same technique can be used whenever all the mutexes (or other re-
sources) to be acquired are known in advance. Each thread should acquire
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the resources it needs in an agreed-upon order, such as by increasing mem-
ory address. No matter how many threads and resources are involved, no
deadlock can occur.

As one further example of this technique, you can look at some code
from the Linux kernel. Recall from Chapter 3 that the scheduler keeps
the run queue, which holds runnable threads, in a data structure. In the
kernel source code, this structure is known as an rq. Each processor in a
multiprocessor system has its own rq. When the scheduler moves a thread
from one processor’s rq to another’s, it needs to lock both rqs. Figure 4.21
shows the code to do this. Note that this procedure uses the deadlock
prevention technique with one refinement: it also tests for the special case
that the two runqueues are in fact one and the same.

Deadlock prevention is not always possible. In particular, the ordering
technique I showed cannot be used if the mutexes that need locking only
become apparent one by one as the computation proceeds, such as when
following a linked list or other pointer-based data structure. Thus, you need
to consider coping with deadlocks, rather than only preventing them.

4.7.3 Ex Post Facto Deadlock Detection

In order to diagnose deadlocks, you need some information about who is
waiting for whom. Suppose that each mutex records not just whether it is
locked or unlocked, but also which thread it is held by, if any. (This infor-
mation may be useful for unrelated purposes as well, such as implementing
recursive or error-checking mutexes.) Additionally, when a thread is unable
to immediately acquire a mutex and is put into a waiting state, you can
record which mutex it is waiting for. With this information, you can con-
struct a resource allocation graph. Figure 4.22 shows an example graph for
Section 4.7.1’s sample deadlock between bank account transfers. Squares
are threads and circles are mutexes. The arrows show which mutex each
thread is waiting to acquire and which thread each mutex is currently held
by. Because the graph has a cycle, it shows that the system is deadlocked.

A system can test for deadlocks periodically or when a thread has waited
an unreasonably long time for a lock. In order to test for a deadlock, the
system uses a standard graph algorithm to check whether the resource al-
location graph contains a cycle. With the sort of mutexes described in this
book, each mutex can be held by at most one thread and each thread is
waiting for at most one mutex, so no vertex in the graph has an out-degree
greater than 1. This allows a somewhat simpler graph search than in a
fully-general directed graph.
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static void double_rq_lock(struct rq *rq1, struct rq *rq2)

__acquires(rq1->lock)

__acquires(rq2->lock)

{

BUG_ON(!irqs_disabled());

if (rq1 == rq2) {

raw_spin_lock(&rq1->lock);

__acquire(rq2->lock); /* Fake it out ;) */

} else {

if (rq1 < rq2) {

raw_spin_lock(&rq1->lock);

raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);

} else {

raw_spin_lock(&rq2->lock);

raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);

}

}

}

Figure 4.21: The Linux scheduler uses deadlock prevention when locking
two run queues.

myAccount.mutex

My transfer to you

Your transfer to me

yourAccount.mutex

Figure 4.22: The cycle in this resource allocation graph indicates a deadlock.
Each square represents a thread and each circle a mutex. An arrow from
a square to a circle shows a thread waiting for a mutex, whereas an arrow
from a circle to a square shows a mutex being held by a thread.
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Once a deadlock is detected, a painful action is needed in order to recover:
one of the deadlocked threads must be forcibly terminated, or at least rolled
back to an earlier state, so as to free up the mutexes it holds. In a general
computing environment, where threads have no clean way to be rolled back,
this is bit akin to freeing yourself from a bear trap by cutting off your leg.
For this reason, ex post facto deadlock detection is not common in general-
purpose operating systems.

One environment in which ex post facto deadlock detection and recovery
works cleanly is database systems, with their support for atomic transac-
tions. I will explain atomic transactions in Chapter 5; for now, you need only
understand that a transaction can cleanly be rolled back, such that all the
updates it made to the database are undone. Because this infrastructure is
available, database systems commonly include deadlock detection. When a
deadlock is detected, one of the transactions fails and can be rolled back, un-
doing all its effects and releasing all its locks. This breaks the deadlock and
allows the remaining transactions to complete. The rolled-back transaction
can then be restarted.

Figure 4.23 shows an example scenario of deadlock detection taken from
the Oracle database system. This transcript shows the time interleaving of
two different sessions connected to the same database. One session is shown
at the left margin, while the other session is shown indented four spaces.
Command lines start with the system’s prompt, SQL>, and then contain a
command typed by the user. Each command line is broken into two lines,
to fit the width of this book’s pages. Explanatory comments start with --.
All other lines are output. In Chapter 5 I will show the recovery from this
particular deadlock as part of my explanation of transactions.

4.7.4 Immediate Deadlock Detection

The two approaches to deadlocks presented thus far are aimed at the times
before and after the moment when deadlock occurs. One arranges that the
prerequisite circumstances leading to deadlock do not occur, while the other
notices that deadlock already has occurred, so that the mess can be cleaned
up. Now I will turn to a third alternative: intervening at the very moment
when the system would otherwise deadlock. Because this intervention re-
quires techniques similar to those discussed in Section 4.7.3, this technique is
conventionally known as a form of deadlock detection rather than deadlock
prevention, even though from a literal perspective the deadlock is prevented
from happening.

As long as no deadlock is ever allowed to occur, the resource allocation
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SQL> update accounts set balance = balance - 100

where account_number = 1;

1 row updated.

SQL> update accounts set balance = balance - 250

where account_number = 2;

1 row updated.

SQL> update accounts set balance = balance + 100

where account_number = 2;

-- note no response, for now this SQL session is hanging

SQL> update accounts set balance = balance + 250

where account_number = 1;

-- this session hangs, but in the other SQL session we get

-- the following error message:

update accounts set balance = balance + 100

where account_number = 2

*

ERROR at line 1:

ORA-00060: deadlock detected while waiting for resource

Figure 4.23: The Oracle database system detects a deadlock between two
sessions connected to the same database. One session, shown at the left
margin, is transferring $100 from account 1 to account 2. The other session,
shown indented, is transferring $250 from account 2 to account 1. Each
update statement locks the account being updated. Therefore, each session
hangs when it tries locking the account that the other session has previously
locked.
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graph will remain acyclic, that is, free of cycles. Each time a thread tries to
lock a mutex, the system can act as follows:

• If the mutex is unlocked, lock it and add an edge from the mutex to
the thread, so as to indicate which thread now holds the lock.

• If the mutex is locked, follow the chain of edges from it until that chain
dead ends. (It must, because the graph is acyclic.) Is the end of the
chain the same as the thread trying to lock the mutex?

– If not, add an edge showing that the thread is waiting for the
mutex, and put the thread into a waiting state.

– If the end of the chain is the same thread, adding the extra edge
would complete a cycle, as shown in Figure 4.24. Therefore, don’t
add the edge, and don’t put the thread into a waiting state. In-
stead, return an error code from the lock request (or throw an
exception), indicating that the mutex could not be locked because
a deadlock would have resulted.

Notice that the graph search here is somewhat simpler than in ex post
facto deadlock detection, because the graph is kept acyclic. Nonetheless, the
basic idea is the same as deadlock detection, just done proactively rather
than after the fact. As with any deadlock detection, some form of roll-
back is needed; the application program that tried to lock the mutex must
respond to the news that its request could not be granted. The application
program must not simply try again to acquire the same mutex, because it
will repeatedly get the same error code. Instead, the program must release
the locks it currently holds and then restart from the beginning. The chance
of needing to repeat this response can be reduced by sleeping briefly after
releasing the locks and before restarting.

Designing an application program to correctly handle immediate dead-
lock detection can be challenging. The difficulty is that before the program
releases its existing locks, it should restore the objects those locks were
protecting to a consistent state. One case in which immediate deadlock de-
tection can be used reasonably easily is in a program that acquires all its
locks before it modifies any objects.

One example of immediate deadlock detection is in Linux and Mac OS X,
for the readers/writers locks placed on files using fcntl. If a lock request
would complete a cycle, the fcntl procedure returns the error code EDEADLK.
However, this deadlock detection is not a mandatory part of the POSIX
specification for fcntl.
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myAccount.mutex

My transfer to you

Your transfer to me

yourAccount.mutex

Figure 4.24: In this resource graph, the solid arrows indicate that my transfer
holds myAccount.mutex, your transfer holds yourAccount.mutex, and my
transfer is waiting for yourAccount.mutex. The dashed arrow indicates a
request currently being made by your transfer to lock myAccount.mutex.
If this dashed arrow is added, a cycle is completed, indicating a deadlock.
Therefore, the request will fail rather than enter a state of waiting.

4.8 The Interaction of Synchronization with Schedul-
ing

Recall that the scheduler controls which runnable thread runs on each pro-
cessor, and synchronization actions performed by the running thread control
which threads are runnable. Therefore, synchronization and scheduling in-
teract with one another. Two forms of interaction, known as priority inver-
sion and the convoy phenomenon, are particularly interesting. Said another
way, they can cause lots of grief. Each can subvert the prioritization of
threads, and the convoy phenomenon can also greatly increase the context
switching rate and hence decrease system throughput. For simplicity, each
is presented here under the assumption of a single-processor system.

4.8.1 Priority Inversion

When a priority-based scheduler is used, a high-priority thread should not
have to wait while a low-priority thread runs. If threads of different prior-
ity levels share mutexes or other blocking synchronization primitives, some
minor violations of priority ordering are inevitable. For example, consider
the following sequence of events involving two threads (high-priority and
low-priority) that share a single mutex:

1. The high-priority thread goes into the waiting state, waiting for an
I/O request to complete.

2. The low-priority thread runs and acquires the mutex.
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3. The I/O request completes, making the high-priority thread runnable
again. It preempts the low-priority thread and starts running.

4. The high-priority thread tries to acquire the mutex. Because the mu-
tex is locked, the high-priority thread is forced to wait.

5. The low-priority thread resumes running.

At this point, a high-priority thread is waiting while a low-priority thread
runs. However, this temporary violation of priority ordering is not a big
deal, because programmers generally ensure that no thread holds a mutex
for very long. As such, the low-priority thread will soon release the mutex
and allow the high-priority thread to run.

However, another, more insidious problem can lead to longer-term vio-
lation of priority order (that is, priority inversion). Suppose there are three
threads, of low, medium, and high priority. Consider this sequence of events:

1. The high- and medium-priority threads both go into the waiting state,
each waiting for an I/O request to complete.

2. The low-priority thread runs and acquires the mutex.

3. The two I/O requests complete, making the high- and medium-priority
threads runnable. The high-priority thread preempts the low-priority
thread and starts running.

4. The high-priority thread tries to acquire the mutex. Because the mu-
tex is locked, the high-priority thread is forced to wait.

5. At this point, the medium-priority thread has the highest priority of
those that are runnable. Therefore it runs.

In this situation, the medium-priority thread is running and indirectly
keeping the high-priority thread from running. (The medium-priority thread
is blocking the low-priority thread by virtue of their relative priorities. The
low-priority thread is blocking the high-priority thread by holding the mu-
tex.) The medium-priority thread could run a long time. In fact, a whole
succession of medium-priority threads with overlapping lifetimes could come
and go, and the high-priority thread would wait the whole time despite its
higher priority. Thus, the priority inversion could continue for an arbitrarily
long time.
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One “solution” to the priority inversion problem is to avoid fixed-priority
scheduling. Over time, a decay usage scheduler will naturally lower the prior-
ity of the medium-priority thread that is running. Eventually it will drop be-
low the low-priority thread, which will then run and free the mutex, allowing
the high-priority thread to run. However, a succession of medium-priority
threads, none of which runs for very long, could still hold up the high-priority
thread arbitrarily long. Therefore, Microsoft Windows responds to priority
inversion by periodically boosting the priority of waiting low-priority pro-
cesses.

This first “solution” has two shortcomings. First, it may be sluggish in
responding to a priority inversion. Second, fixed-priority scheduling is desir-
able in some applications, such as real-time systems. Therefore, a genuine
solution to the priority inversion problem is needed—one that makes the
problem go away, rather than just limiting the duration of its effect. The
genuine solution is priority inheritance.

Priority inheritance is a simple idea: any thread that is waiting for a
mutex temporarily “lends” its priority to the thread that holds the mutex.
A thread that holds mutexes runs with the highest priority among its own
priority and those priorities it has been lent by threads waiting for the
mutexes. In the example with three threads, priority inheritance will allow
the low-priority thread that holds the mutex to run as though it were high-
priority until it unlocks the mutex. Thus, the truly high-priority thread will
get to run as soon as possible, and the medium-priority thread will have to
wait.

Notice that the high-priority thread has a very selfish motive for let-
ting the low-priority thread use its priority: it wants to get the low-priority
thread out of its way. The same principle can be applied with other forms of
scheduling than priority scheduling. By analogy with priority inheritance,
one can have deadline inheritance (for Earliest Deadline First scheduling) or
even a lending of processor allocation shares (for proportional-share schedul-
ing).

4.8.2 The Convoy Phenomenon

I have remarked repeatedly that well-designed programs do not normally
hold any mutex for very long; thus, attempts to lock a mutex do not nor-
mally encounter contention. This is important because locking a mutex with
contention is much more expensive. In particular, the big cost of a request
to lock an already-locked mutex is context switching, with the attendant
loss of cache performance. Unfortunately, one particularly nasty interaction
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between scheduling and synchronization, known as the convoy phenomenon,
can sometimes cause a heavily used mutex to be perpetually contended,
causing a large performance loss. Moreover, the convoy phenomenon can
subvert scheduling policies, such as the assignment of priorities. In this sub-
section, I will explain the convoy phenomenon and examine some solutions.

Suppose a system has some very central data structure, protected by a
mutex, which each thread operates on fairly frequently. Each time a thread
operates on the structure, the thread locks the mutex before and unlocks
it after. Each operation is kept as short as possible. Because they are
frequent, however, the mutex spends some appreciable fraction of the time
locked, perhaps 5 percent.

The scheduler may at any point preempt a thread. For example, the
thread may have consumed its allocated time slice. In the example situa-
tion where the mutex is locked 5 percent of the time, it would not be very
surprising if after a while, a thread were preempted while it held the mutex.
When this happens, the programmer who wrote that thread loses all control
over how long it holds the mutex locked. Even if the thread was going to
unlock the mutex in its very next instruction, it may not get the opportunity
to execute that next instruction for some time to come. If the processor is
dividing its time among N runnable threads of the same priority level, the
thread holding the mutex will presumably not run again for at least N times
the context-switching time, even if the other threads all immediately block.

In this situation, a popular mutex is held for a long time. Meanwhile,
other threads are running. Because the mutex is a popular one, the chances
are good those other threads will try to acquire it. Because the mutex is
locked, all the threads that try to acquire the mutex will be queued on its
wait queue. This queue of threads is the convoy, named by analogy with
the unintentional convoy of vehicles that develops behind one slow vehicle
on a road with no passing lane. As you will see, this convoy spells trouble.

Eventually the scheduler will give a new time slice to the thread that
holds the mutex. Because of that thread’s design, it will quickly unlock the
mutex. When that happens, ownership of the mutex is passed to the first
thread in the wait queue, and that thread is made runnable. The thread
that unlocked the mutex continues to run, however. Because it was just
recently given a new time slice, one might expect it to run a long time.
However, it probably won’t, because before too terribly long, it will try to
reacquire the popular mutex and find it locked. (“Darn,” it might say, “I
shouldn’t have given that mutex away to the first of the waiters. Here I am
needing it again myself.”) Thus, the thread takes its place at the back of
the convoy, queued up for the mutex.
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At this point, the new holder of the mutex gets to run, but it too gives
away the mutex, and hence is unlikely to run a full time slice before it has
to queue back up. This continues, with each thread in turn moving from
the front of the mutex queue through a brief period of execution and back
to the rear of the queue. There may be slight changes in the makeup of the
convoy—a thread may stop waiting on the popular mutex, or a new thread
may join—but seen in the aggregate, the convoy can persist for a very long
time.

This situation causes two problems. First, the context switching rate
goes way up; instead of one context switch per time slice, there is now one
context switch per attempt to acquire the popular mutex. The overhead of
all those context switches will drive down the system throughput. Second,
the scheduler’s policy for choosing which thread to run is subverted. For ex-
ample, in a priority scheduler, the priorities will not govern how the threads
run. The reason for this is simple: the scheduler can choose only among the
runnable threads, but with the convoy phenomenon, there will only be one
runnable thread; all the others will be queued up for the mutex.

When I described mutexes, I said that each mutex contains a wait
queue—a list of waiting threads. I implied that this list is maintained in
a first-in first-out (FIFO) basis, that is, as a true queue. If so, then the
convoy threads will essentially be scheduled in a FIFO round-robin, inde-
pendent of the scheduler policy (for example, priorities), because the threads
are dispatched from the mutex queue rather than the scheduler’s run queue.

This loss of prioritization can be avoided by handling the mutex’s wait
queue in priority order the same way as the run queue, rather than FIFO.
When a mutex is unlocked with several threads waiting, ownership of the
mutex could be passed not to the thread that waited the longest, but rather
to the one with the highest priority.

Changing which one thread is moved from the mutex’s waiters list to
become runnable does not solve the throughput problem, however. The
running thread is still going to have the experience I anthropomorphized
as “Darn, I shouldn’t have given that mutex away.” The context switching
rate will still be one switch per lock acquisition. The convoy may reorder
itself, but it will not dissipate.

Therefore, stronger medicine is needed for popular mutexes. Instead of
the mutexes I showed in Figures 4.10 and 4.11 on page 111, you can use the
version shown in Figure 4.25.

When a popular mutex is unlocked, all waiting threads are made runnable
and moved from the waiters list to the runnable threads list. However, own-
ership of the mutex is not transferred to any of them. Instead, the mutex
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to lock mutex:

repeat

lock mutex.spinlock (in cache-conscious fashion)

if mutex.state = 1 then

let mutex.state = 0

unlock mutex.spinlock

let successful = true

else

add current thread to mutex.waiters

remove current thread from runnable threads

unlock mutex.spinlock

yield to a runnable thread

let successful = false

until successful

to unlock mutex:

lock mutex.spinlock (in cache-conscious fashion)

let mutex.state = 1

move all threads from mutex.waiters to runnable

unlock mutex.spinlock

Figure 4.25: To protect against convoys, the unlock operation sets the mu-
tex’s state to unlocked and makes all waiting threads runnable. Each awoken
thread loops back to trying to lock the mutex. This contrasts with the prior
version of mutexes, in which one thread was awoken with the mutex left in
its locked state.
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is left in the unlocked state, with mutex.state equal to 1. That way, the
running thread will not have to say “Darn.” It can simply relock the mutex;
over the course of its time slice, it may lock and unlock the mutex repeatedly,
all without context switching.

Because the mutex is only held 5 percent of the time, the mutex will
probably not be held when the thread eventually blocks for some other
reason (such as a time slice expiration). At that point, the scheduler will
select one of the woken threads to run. Note that this will naturally follow
the normal scheduling policy, such as priority order.

The woken thread selected to run next did not have the mutex owner-
ship directly transferred to it. Therefore, it will need to loop back to the
beginning of the mutex acquisition code, as will each thread in turn when
it is scheduled. However, most of the time the threads will find the mutex
unlocked, so this won’t be expensive. Also, because each thread will be
able to run for a normal period without context-switching overhead per lock
request, the convoy will dissipate.

The POSIX standard API for mutexes requires that one or the other
of the two prioritization-preserving approaches be taken. At a minimum, if
ownership of a mutex is directly transferred to a waiting thread, that waiting
thread must be selected based on the normal scheduling policy rather than
FIFO. Alternatively, a POSIX-compliant mutex implementation can simply
dump all the waiting threads back into the scheduler and let it sort them
out, as in Figure 4.25.

4.9 Nonblocking Synchronization

In order to introduce nonblocking synchronization with a concrete example,
let’s return to the TicketVendor class shown in Figure 4.6 on page 105. In
that example, whenever a thread is selling a ticket, it temporarily blocks
any other thread from accessing the same TicketVendor. That ensures
that the seatsRemaining and cashOnHand are kept consistent with each
other, as well as preventing two threads from both selling the last available
ticket. The downside is that if the scheduler ever preempts a thread while it
holds the TicketVendor’s lock, all other threads that want to use the same
TicketVendor remain blocked until the first thread runs again, which might
be arbitrarily far in the future. Meanwhile, no progress is made on vending
tickets or even on conducting an audit. This kind of blocking underlies
both priority inversion and the convoy phenomenon and if extended through
a cyclic chain of objects can even lead to deadlock. Even absent those
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problems, it hurts performance. What’s needed is a lock-free TicketVendor

that manages to avoid race bugs without this kind of unbounded blocking.
Recall that the spinlocks introduced in Section 4.3.3 use atomic exchange

instructions. A thread that succeeds in changing a lock from the unlocked
state to the locked state is guaranteed that no other thread did the same.
The successful thread is thereby granted permission to make progress, for
example by vending a ticket. However, actually making progress and then
releasing the lock are separate actions, not part of the atomic exchange. As
such, they might be delayed. A nonblocking version of the TicketVendor

requires a more powerful atomic instruction that can package the actual
updating of the TicketVendor with the obtaining of permission.

The compare-and-set instruction meets this need by doing the following
two things atomically:

1. The instruction determines whether a variable contains a specified
value and reports the answer.

2. The instruction sets the variable to a new value, but only if the answer
to the preceding question was “yes.”

Some variant of this instruction is provided by all contemporary processors.
Above the hardware level, it is also part of the Java API through the classes
included in the java.util.concurrent.atomic package. Figures 4.26 and
4.27 show a nonblocking version of the TicketVendor class that uses one of
these classes, AtomicReference.

In this example, the sellTicket method attempts to make progress
using the following method invocation:

state.compareAndSet(snapshot, next)

If the state still matches the earlier snapshot, then no other concurrent
thread has snuck in and sold a ticket. In this case, the state is atomically
updated and the method returns true, at which point a ticket can safely
be dispensed. On the other hand, if the method returns false, then the
enclosing while loop will retry the whole process, starting with getting a
new snapshot of the state. You can explore this behavior in Programming
Project 4.17.

The lock-free synchronization illustrated by this example ensures that
no thread will ever be blocked waiting for a lock held by some other thread.
In particular, no matter how long the scheduler chooses to delay execu-
tion of any thread, other threads can continue making progress. However,
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import java.util.concurrent.atomic.AtomicReference;

public class LockFreeTicketVendor {

private static class State {

private final int seatsRemaining, cashOnHand;

public State(int seatsRemaining, int cashOnHand) {

this.seatsRemaining = seatsRemaining;

this.cashOnHand = cashOnHand;

}

public int getSeatsRemaining(){return seatsRemaining;}

public int getCashOnHand(){return cashOnHand;}

}

private final AtomicReference<State> state;

private final int startingSeats, startingCash;

public LockFreeTicketVendor(int startingSeats,

int startingCash) {

this.startingSeats = startingSeats;

this.startingCash = startingCash;

this.state = new AtomicReference<State>

(new State(startingSeats, startingCash));

}

// See next figure for sellTicket and audit methods.

// Other details also remain to be filled in.

}

Figure 4.26: This lock-free ticket vendor uses nonblocking synchroniza-
tion. Notice that rather than directly storing the seatsRemaining and
cashOnHand, it stores an AtomicReference to a State object that packages
these two variables together, allowing them to be kept consistent without
locking. The next figure shows how this AtomicReference is used.
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public void sellTicket(){

while(true){

State snapshot = state.get();

int seatsRemaining = snapshot.getSeatsRemaining();

int cashOnHand = snapshot.getCashOnHand();

if(seatsRemaining > 0){

State next = new State(seatsRemaining - 1,

cashOnHand + PRICE);

if(state.compareAndSet(snapshot, next)){

dispenseTicket();

return;

}

} else {

displaySorrySoldOut();

return;

}

}

}

public void audit() {

State snapshot = state.get();

int seatsRemaining = snapshot.getSeatsRemaining();

int cashOnHand = snapshot.getCashOnHand();

// check seatsRemaining, cashOnHand

}

Figure 4.27: These methods from the previous figure’s lock-free ticket vendor
show how the AtomicReference supports nonblocking synchronization. A
consistent snapshot can be taken of the current state, and the state is only
set to an updated version (and a ticket dispensed) if the snapshot remains
valid.
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there is still one way a thread might end up running arbitrarily long with-
out making progress, which is if over and over again, other threads slip in
and update the state. In a case like that, the system as a whole continues
to make progress—tickets continue being sold—but one particular thread
keeps retrying. Stronger forms of nonblocking synchronization, known as
“wait-free synchronization,” guarantee that each individual thread makes
progress. However, wait-free synchronization is considerably more complex
than the style of lock-free synchronization shown here and hence is rarely
used in practice. Improving the practicality of wait-free synchronization has
remained an active research area. Enough progress has been made, partic-
ularly in the period 2011–2014, to suggest that wait-free synchronization’s
day may be coming.

Compare-and-set techniques can also be used to create lock-free data
structures that allow multiple threads to carry out operations concurrently,
to the maximum extent possible. For example, if a queue is going to de-
liver data in a well-defined order, dequeue operations need to be processed
sequentially, but there is no reason additional data can’t be enqueued onto
an already non-empty queue at the same time as earlier data is dequeued.
Such data structures aren’t easy to design and program; achieving high per-
formance and concurrency without introducing bugs is quite challenging.
However, concurrent data structures can be programmed once by experts
and then used as building blocks. Concurrent queues in particular can be
used in frameworks that queue up tasks to be processed by a pool of threads;
one example is Apple’s Grand Central Dispatch framework.

4.10 Security and Synchronization

A system can be insecure for two reasons: either because its security poli-
cies are not well designed, or because some bug in the code enforcing those
policies allows the enforcement to be bypassed. For example, you saw in
Chapter 3 that a denial of service attack can be mounted by setting some
other user’s thread to a very low priority. I remarked that as a result, op-
erating systems only allow a thread’s priority to be changed by its owner.
Had this issue been overlooked, the system would be insecure due to an
inadequate policy. However, the system may still be insecure if clever pro-
grammers can find a way to bypass this restriction using some low-level bug
in the operating system code.

Many security-critical bugs involve synchronization, or more accurately,
the lack of synchronization—the bugs are generally race conditions resulting
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from inadequate synchronization. Four factors make race conditions worth
investigation by someone exploiting a system’s weaknesses (a cracker):

• Any programmer of a complicated concurrent system is likely to in-
troduce race bugs, because concurrency and synchronization are hard
to reason about.

• Normal testing of the system is unlikely to have eliminated these bugs,
because the system will still work correctly the vast majority of the
time.

• Although the race might almost never occur in normal operation, the
cracker may be able to trigger the race by understanding it and care-
fully staging the necessary sequence of events. Even if the odds can’t
be improved beyond one in ten thousand (for example), the cracker
can easily program a computer to loop through the attempt tens of
thousands of times until the lucky timing happens.

• Races allow seemingly impossible situations, defeating the system de-
signer’s careful security reasoning.

As a hypothetical example, assume that an operating system had a fea-
ture for changing a thread’s priority when given a pointer to a block of mem-
ory containing two values: an identifier for the thread to be changed and
the new priority. Let’s call these request.thread and request.priority.
Suppose that the code looked like this:

if request.thread is owned by the current user then

set request.thread’s priority to request.priority

else

return error code for invalid request

Can you see the race? A cracker could start out with request.thread being
a worthless thread he or she owns and then modify request.thread to be
the victim thread after the ownership check but before the priority is set. If
the timing doesn’t work out, no great harm is done, and the cracker can try
again.

This particular example is not entirely realistic in a number of regards,
but it does illustrate a particular class of races often contributing to se-
curity vulnerabilities: so-called TOCTTOU races, an acronym for Time
Of Check To Time Of Use. An operating system designer would normally
guard against this particular TOCTTOU bug by copying the whole request
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structure into protected memory before doing any checking. However, other
TOCTTOU bugs arise with some regularity. Often, they are not in the
operating system kernel itself, but rather in a privileged program.

For example, suppose an email delivery program is granted the privilege
of writing into any file, independent of file ownership or normal protections,
so that it can deliver each user’s mail into that user’s mail file. Before
delivering mail into a mail file, it will check that the mail file is a normal file
that is really in the expected location, not an indirect reference (symbolic
link) to a file located elsewhere. (I will explain symbolic links in Chapter 8,
when I cover file systems. The details are not important here.) That way,
you cannot trick the mail delivery program into writing into some sensitive
file. Or can you? Perhaps by changing from a genuine mail file to a symbolic
link at just the right moment, you can exploit a TOCTTOU vulnerability.
Sun Microsystems had this particular problem with their mail software in
the early 1990s.

Exercises

4.1 As an example of a race condition, I showed how two threads could
each dispense the last remaining ticket by each checking seatsRemaining
before either decrements it. Show a different sequence of events for
that same code, whereby starting with seatsRemaining being 2, two
threads each dispense a ticket, but seatsRemaining is left as 1 rather
than 0.

4.2 In the mutex-locking pseudocode of Figure 4.10 on page 111, there
are two consecutive steps that remove the current thread from the
runnable threads and then unlock the spinlock. Because spinlocks
should be held as briefly as possible, we ought to consider whether
these steps could be reversed, as shown in Figure 4.28. Explain why
reversing them would be a bad idea by giving an example sequence of
events where the reversed version malfunctions.

4.3 Show how to change queuing mutexes to correspond with POSIX’s
mutex-type PTHREAD MUTEX RECURSIVE. You may add additional com-
ponents to each mutex beyond the state, waiters, and spinlock.

4.4 Explain why replacing notifyAll by notify is not safe in the Bounded
Buffer class of Figure 4.17 on page 119. Give a concrete sequence of
events under which the modified version would misbehave.
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to lock mutex:

lock mutex.spinlock (in cache-conscious fashion)

if mutex.state = 1 then

let mutex.state = 0

unlock mutex.spinlock

else

add current thread to mutex.waiters

unlock mutex.spinlock

remove current thread from runnable threads

yield to a runnable thread

Figure 4.28: This is a buggy version of Figure 4.10. Exercise 4.2 asks you
to explain what is wrong with it.

4.5 A semaphore can be used as a mutex. Does it correspond with the kind
POSIX calls PTHREAD MUTEX ERROR CHECK, PTHREAD MUTEX NORMAL, or
PTHREAD MUTEX RECURSIVE? Justify your answer.

4.6 State licensing rules require a child-care center to have no more than
three infants present for each adult. You could enforce this rule using
a semaphore to track the remaining capacity, that is, the number of
additional infants that may be accepted. Each time an infant is about
to enter, an acquire operation is done first, with a release when
the infant leaves. Each time an adult enters, you do three release

operations, with three acquire operations before the adult may leave.

(a) Although this system will enforce the state rules, it can create
a problem when two adults try to leave. Explain what can go
wrong, with a concrete scenario illustrating the problem.

(b) The difficulty you identified in the preceding subproblem can be
remedied by using a mutex as well as the semaphore. Show how.

(c) Alternatively, you could abandon semaphores entirely and use a
monitor with one or more condition variables. Show how.

4.7 I illustrated deadlock detection using a transcript taken from an Oracle
database (Figure 4.23, page 133). From that transcript you can tell
that the locks are at the granularity of one per row, rather than one
per table.

(a) What is the evidence for this assertion?
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(b) Suppose the locking were done per table instead. Explain why
no deadlock would have ensued.

(c) Even if locking were done per table, deadlock could still happen
other under circumstances. Give an example.

4.8 Suppose you have two kinds of objects: threads and mutexes. Each
locked mutex contains a reference to the thread that holds it named
mutex.owner; if the mutex is unlocked, mutex.owner is null. Sim-
ilarly, each thread that is blocked waiting for a mutex contains a
reference to the mutex it is waiting for as thread.blocker; if the
thread is not waiting for any mutex, thread.blocker is null. Sup-
pose threads also contain a field, thread.mark, which is available for
your use and is initialized to 0. Further, suppose you have an array
of all the threads in the system as threads[0], threads[1], and so
forth, up to threads[threads.length-1]. Write a pseudocode algo-
rithm to test whether the system contains a deadlock.

4.9 The main topic of this chapter (synchronization) is so closely related
to the topics of Chapters 2 and 3 (threads and scheduling) that an
author can hardly describe one without also describing the other two.
For each of the following pairs of topics, give a brief explanation of
why understanding the first topic in the pair is useful for gaining a full
understanding of the second:

(a) threads, scheduling

(b) threads, synchronization

(c) scheduling, synchronization

(d) scheduling, threads

(e) synchronization, scheduling

(f) synchronization, threads

4.10 Suppose a computer with only one processor runs a program that
immediately creates three threads, which are assigned high, medium,
and low fixed priorities. (Assume that no other threads are competing
for the same processor.) The threads share access to a single mutex.
Pseudocode for each of the threads is shown in Figure 4.29.

(a) Suppose that the mutex does not provide priority inheritance.
How soon would you expect the program to terminate? Why?
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High-priority thread:

sleep 1 second

lock the mutex

terminate execution of the whole program

Medium-priority thread:

sleep 1 second

run for 10 seconds

Low-priority thread:

lock the mutex

sleep for 2 seconds

unlock the mutex

Figure 4.29: These are the three threads referenced by Exercise 4.10.

(b) Suppose that the mutex provides priority inheritance. How soon
would you expect the program to terminate? Why?

Programming Project 4.16 gives you the opportunity to experimentally
confirm your answers.

4.11 Suppose the first three lines of the audit method in Figure 4.27 on
page 144 were replaced by the following two lines:

int seatsRemaining = state.get().getSeatsRemaining();

int cashOnHand = state.get().getCashOnHand();

Explain why this would be a bug.

Programming Projects

4.1 Flesh out the TicketVendor class from Figure 4.6 on page 105 us-
ing Figure 4.5 on page 101 for guidance. Add a simple test program
that uses a TicketVendor from multiple threads. Temporarily remove
the synchronized keywords and demonstrate race conditions by in-
serting calls to the Thread.sleep method at appropriate points, so
that incredibly lucky timing is not necessary. You should set up one
demonstration for each race previously considered: two threads selling
the last seat, two threads selling seats but the count only going down
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by 1, and an audit midtransaction. Now reinsert the synchronized

keyword and show that the race bugs have been resolved, even with
the sleeps in place.

4.2 Demonstrate races and mutual exclusion as in the previous project, but
using a C program with POSIX threads and mutexes. Alternatively,
use some other programming language of your choice, with its support
for concurrency and mutual exclusion.

4.3 Choose some simplified version of a real-world process that evolves
over time, such as a bouncing ball, an investment with compound in-
terest, or populations of predator and prey. Write a program with two
threads. One thread should simulate the process you chose as time
passes, possibly with some suitable scaling such as 1 second of simula-
tor time per year of simulated time. The other thread should provide
a user interface through which the user can modify the parameters
of the ongoing simulation and can also pause and resume the simu-
lation. Be sure to properly synchronize the two threads. Java would
be an appropriate language for this project, but you could also use
some other language with support for concurrency, synchronization,
and user interfaces.

4.4 This project is identical to the previous one, except that instead of
building a simulator for a real-world process, you should build a game
of the kind where action continues whether or not the user makes a
move.

4.5 Write a test program in Java for the BoundedBuffer class of Fig-
ure 4.17 on page 119.

4.6 Modify the BoundedBuffer class of Figure 4.17 (page 119) to call
notifyAll only when inserting into an empty buffer or retrieving from
a full buffer. Test that it still works.

4.7 Rewrite the BoundedBuffer class of Figure 4.17 (page 119) in C or
C++ using the POSIX API. Use two condition variables, one for avail-
ability of space and one for availability of data.

4.8 Define a Java class for readers/writers locks, analogous to the Bounded
Buffer class of Figure 4.17 (page 119). Allow additional readers to
acquire a reader-held lock even if writers are waiting. As an alternative
to Java, you may use another programming language with support for
mutexes and condition variables.
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4.9 Modify your readers/writers locks from the prior project so no addi-
tional readers may acquire a reader-held lock if writers are waiting.

4.10 Modify your readers/writers locks from either of the prior two projects
to support an additional operation that a reader can use to upgrade
its status to writer. (This is similar to dropping the read lock and
acquiring a write lock, except that it is atomic: no other writer can
sneak in and acquire the lock before the upgrading reader does.) What
happens if two threads both hold the lock as readers, and each tries
upgrading to become a writer? What do you think a good response
would be to that situation?

4.11 Define a Java class for barriers, analogous to the BoundedBuffer class
of Figure 4.17 (page 119). Alternatively, use another programming
language, with support for mutexes and condition variables.

4.12 Define a Java class, Semaphore, such that you can remove the import

line from Figure 4.18 on page 125 and have that BoundedBuffer class
still work.

4.13 Rewrite the semaphore-based bounded buffer of Figure 4.18 (page 125)
so that instead of using a List, it uses an array and a couple integer
variables, just like the earlier version (Figure 4.17, page 119). Be
sure to provide mutual exclusion for the portion of each method that
operates on the array and the integer variables.

4.14 Translate the semaphore-based bounded buffer of Figure 4.18 (page 125)
into C or C++ using the POSIX API’s semaphores.

4.15 Translate the dining philosophers program of Exploration Project 4.2
into another language. For example, you could use C or C++ with
POSIX threads and mutexes.

4.16 On some systems, such as Linux, each pthreads mutex can be created
with priority inheritance turned either on or off. Using that sort of
system, you can write a program in C or C++ that tests the scenarios
considered in Exercise 4.10. You will also need the ability to run
fixed-priority threads, which ordinarily requires system administrator
privileges. Exploration Project 3.3 shows how you would use sudo to
exercise those privileges. That same project also shows how you would
use time to time the program’s execution and schedtool to restrict
the program to a single processor and to start the main thread at a
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fixed priority. Rather than using time and schedtool, you could build
the corresponding actions into the program you write, but that would
increase its complexity.

For this program, you will need to consult the documentation for a
number of API features not discussed in this textbook. To create a
mutex with priority inheritance turned on or off, you need to pass a
pointer to a mutex attribute object into pthread_mutex_init. That
mutex attribute object is initialized using pthread_mutexattr_init

and then configured using pthread_mutexattr_setprotocol. To cre-
ate a thread with a specific fixed priority, you need to pass a pointer
to an attribute object into pthread_create after initializing the at-
tribute object using pthread_attr_init and configuring it using the
pthread_attr_setinheritsched, pthread_attr_setschedpolicy,
and pthread_attr_setschedparam procedures. To find appropriate
priority levels, you can use sched_get_priority_min. Its return value
can serve as the low priority, and you can add 1 and 2 to form the
medium and high priorities. In order to make the main thread wait
for the threads it creates, you can use pthread_join. In order for
the medium-priority thread to know when it has run for 10 seconds,
it can use gettimeofday as shown in Figure 3.12 on page 87. (For
the threads to sleep, on the other hand, they should use the sleep

procedure as shown in Figure 2.4 on page 26.) When the high-priority
thread is ready to terminate the whole program, it can do so using
exit(0). If you elect not to use the schedtool program, you will
likely need to use the sched_setaffinity and sched_setscheduler

API procedures instead.

4.17 Flesh out the LockFreeTicketVendor class from Figures 4.26 and
4.27 (pages 143 and 144) and test it along the lines of Programming
Project 4.1. By putting in code that counts the number of times the
while loop retries failed compareAndSet operations, you should be
able to see that the code not only operates correctly, but also generally
does so without needing a lot of retries. You can also experimentally
insert an explicit Thread.sleep operation to delay threads between
get and compareAndSet. If you do this, you should see that the num-
ber of retries goes up, but the results still are correct. By only delaying
some threads, you should be able to show that other threads continue
operating at their usual pace.
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Exploration Projects

4.1 I illustrated pipes (as a form of bounded buffer) by piping the output
from the ls command into the tr command. One disadvantage of this
example is that there is no way to see that the two are run concurrently.
For all you can tell, ls may be run to completion, with its output going
into a temporary file, and then tr run afterward, with its input coming
from that temporary file. Come up with an alternative demonstration
of a pipeline, where it is apparent that the two commands are run
concurrently because the first command does not immediately run to
termination.

4.2 The Java program in Figure 4.30 simulates the dining philosophers
problem, with one thread per philosopher. Each thread uses two nested
synchronized statements to lock the two objects representing the
forks to the philosopher’s left and right. Each philosopher dines many
times in rapid succession. In order to show whether the threads are
still running, each thread prints out a message every 100000 times its
philosopher dines.

(a) Try the program out. Assuming you are running on a non-ancient
computer and hence have multiple processor cores, you likely
won’t see any output at all: the threads deadlock before any
of the philosophers has dined 100000 times. If you dramatically
reduce the number 100000, say to 100, you are likely to see the
program initially print out some messages, enough to keep you
aware the program is running, and then after a while, the mes-
sages should stop entirely. This is your sign that the threads have
deadlocked. What is your experience? Does the program dead-
lock on your system? Does it do so consistently if you run the
program repeatedly? Document what you observed (including its
variability) and the circumstances under which you observed it.
If you have more than one system available that runs Java, you
might want to compare them.

(b) Optionally, you could try limiting the program to run on only
one core. It will likely take much longer to deadlock because
the threads are interleaved only at the coarse granularity of the
scheduler’s thread switching, rather than the fine granularity of
the hardware’s instruction execution. If you are using Linux,
Exploration Project 3.3 on page 85 explains how you can limit
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public class Philosopher extends Thread{

private Object leftFork, rightFork;

private int myNumber;

public Philosopher(Object left, Object right, int number){

leftFork = left;

rightFork = right;

myNumber = number;

}

public void run(){

int timesDined = 0;

while(true){

synchronized(leftFork){

synchronized(rightFork){

timesDined++;

}

}

if(timesDined % 100000 == 0)

System.err.println("Thread " + myNumber + " is running.");

}

}

public static void main(String[] args){

final int PHILOSOPHERS = 5;

Object[] forks = new Object[PHILOSOPHERS];

for(int i = 0; i < PHILOSOPHERS; i++){

forks[i] = new Object();

}

for(int i = 0; i < PHILOSOPHERS; i++){

int next = (i+1) % PHILOSOPHERS;

Philosopher p = new Philosopher(forks[i], forks[next], i);

p.start();

}

}

}

Figure 4.30: Java program to simulate the dining philosophers
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the program to a single core. If you are using Windows you
can achieve a similar result using the start command with the
/affinity flag; details are available on the web. For OS X, the
only option unless you have installed the developer tools is to
reboot the entire system with just one cpu enabled. You can do
that by giving the following command before rebooting:

sudo nvram boot-args="cpus=1"

To return to normal operation, give the command

sudo nvram boot-args=""

and reboot again.

(c) You can guarantee the program won’t deadlock (even on multiple
cores) by making one of the threads (such as number 0) acquire its
right fork before its left fork. Explain why this prevents deadlock,
and try it out. Does the program now continue printing messages
as long as you let it run?

4.3 Search on the Internet for reported security vulnerabilities involving
race conditions. How many can you find? How recent is the most
recent report? Do you find any cases particularly similar to earlier
ones?

Notes

The Therac-25’s safety problems were summarized by Leveson and Turner [98].
Those problems went beyond the race bug at issue here, to also include
sloppy software development methodology, a total reliance on software to the
exclusion of hardware interlocks, and an inadequate mechanism for dealing
with problem reports from the field.

When describing races, I spoke of threads’ execution as being interleaved.
In fact, unsynchronized programs may execute in even more bizarre ways
than just interleavings. For example, one thread may see results from an-
other thread out of order. For the Java programming language, considerable
effort has gone into specifying exactly what reorderings of the threads’ ex-
ecution steps are legal. However, the bottom line for programmers is still
that synchronization should be used to avoid races in the first place; trying
to understand the race behavior is a losing battle.

Cache-conscious spinlocks were introduced under the name “Test-and-
Test-and-Set” by Rudolph and Segall [125]. Although this form of spinlock
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handles contention considerably better than the basic variety, it still doesn’t
perform well if many processors are running threads that are contending for
a shared spinlock. The problem is that each time a processor releases the
lock, all the other processors try acquiring it. Thus, as modern systems use
increasing numbers of processors, software designers have turned to more
sophisticated spinlocks. Instead of all the threads monitoring a single mem-
ory location, waiting for it to change, each thread has its own location to
monitor. The waiting threads are organized into a queue, although they
continue to run busy-waiting loops, unlike with a scheduler-supported wait
queue. When a thread releases the lock, it sets the memory location being
monitored by the next thread in the queue. This form of queueing spinlock
(or queue lock) was pioneered by Mellor-Crummey and Scott [107]. For a
summary of further refinements, see Chapter 7 of the textbook by Herlihy
and Shavit [76].

Recall that my brief descriptions of the POSIX and Java APIs are no
replacement for the official documentation on the web at http:// opengroup.
org/ unix and http:// www.oracle.com/ technetwork/ java/ index.html , respec-
tively. In particular, I claimed that each Java mutex could only be associated
with a single condition variable, unlike in the POSIX API. Actually, version
1.5 of the Java API gained a second form of mutexes and condition variables,
contained in the java.util.concurrent.locks package. These new mech-
anisms are not as well integrated with the Java programming language as
the ones I described, but do have the feature of allowing multiple condition
variables per mutex.

My spinlocks depend on an atomic exchange instruction. I mentioned
that one could also use some other atomic read-and-update instruction, such
as atomic increment. In fact, in 1965 Dijkstra [49] showed that mutual
exclusion is also possible using only ordinary load and store instructions.
However, this approach is complex and not practical; by 1972, Dijkstra [52]
was calling it “only of historical interest.”

As mentioned in the text, waiting for a condition variable should always
be done using a loop, because when the thread finishes waiting, it may
not be the first to acquire the mutex. For example, a thread that is notified
because data was placed into a bounded buffer may find that another thread
has meanwhile emptied the buffer back out. However, there is also another
reason the loop is necessary. On rare occasions the wait procedure may
return without notify or notifyAll having been invoked, a circumstance
known as a spurious wakeup.

Semaphores were proposed by Dijkstra in a privately circulated 1965
manuscript [50]; he formally published the work in 1968 [51]. Note, how-

http://opengroup.org/unix
http://opengroup.org/unix
http://www.oracle.com/technetwork/java/index.html
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ever, that Dijkstra credits Scholten with having shown the usefulness of
semaphores that go beyond 0 and 1. Presumably this includes the semaphore
solution to the bounded buffer problem, which Dijkstra presents.

The idea of using a consistent ordering to prevent deadlocks was pub-
lished by Havender, also in 1968 [73]. Note that his title refers to “avoiding
deadlock.” This is potentially confusing, as today deadlock avoidance means
something different than deadlock prevention. Havender describes what is
today called deadlock prevention. Deadlock avoidance is a less practical ap-
proach, dating at least to Dijkstra’s work in 1965 and fleshed out by Haber-
mann in 1971 [68]. (Remarkably, Habermann’s title speaks of “prevention”
of deadlocks—so terminology has completely flip-flopped since the seminal
papers.) I do not present deadlock avoidance in this textbook. Havender
also described other approaches to preventing deadlock; ordering is simply
his “Approach 1.” The best of his other three approaches is “Approach 2,”
which calls for obtaining all necessary resources at the same time, rather
than one by one. Coffman, Elphick and Shoshani [35] published a survey
of deadlock issues in 1971, which is the origin of the four defining condi-
tions of deadlocks presented on page 127 and which made the contemporary
distinction between deadlock prevention and deadlock avoidance.

In 1971, Courtois, Heymans, and Parnas [39] described both variants of
the readers/writers locks that the programming projects call for. (In one,
readers take precedence over waiting writers, whereas in the other waiting
writers take precedence.) They also point out that neither of these two
versions prevents starvation: the only question is which class of threads can
starve the other.

Resource allocation graphs were introduced by Holt in the early 1970s;
the most accessible publication is number [80]. Holt also considered more
sophisticated cases than I presented, such as resources for which multiple
units are available, and resources that are produced and consumed rather
than merely being acquired and released.

Monitors and condition variables apparently were in the air in the early
1970s. Although the clearest exposition is by Hoare in 1974 [78], similar
ideas were also proposed by Brinch Hansen [24] and by Dijkstra [52], both
in 1972. Brinch Hansen also designed the monitor-based programming lan-
guage Concurrent Pascal, for which he later wrote a history [25].

My example of deadlock prevention in the Linux kernel was extracted
from the file kernel/sched.c in version 2.6.39.

The use of priority inheritance to limit priority inversion was explained
by Sha, Rajkumar, and Lehoczky [132]. They also presented an alternative
solution to the priority inversion problem, known as the priority ceiling
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protocol. The priority ceiling protocol sometimes forces a thread to wait
before acquiring a mutex, even though the mutex is available. In return for
that extra waiting, it guarantees that a high-priority thread will only have
to loan its priority to at most one lower-priority thread to free up a needed
mutex. This allows the designer of a real-time system to calculate a tighter
bound on each task’s worst-case execution time. Also, the priority ceiling
protocol provides a form of deadlock avoidance.

The convoy phenomenon, and its solution, were described by Blasgen et
al. [22].

Dijkstra introduced the dining philosophers problem in reference [52]. He
presented a more sophisticated solution that not only prevented deadlock
but also ensured that each hungry philosopher got a turn to eat, without
the neighboring philosophers taking multiple turns first.

The textbook by Herlihy and Shavit [76] is a good starting point for
learning about nonblocking synchronization.

The lock-free ticket vendor example relies crucially on Java’s garbage
collector (automatic memory management) so that each time an update is
performed, a new State object can be created and there are no problems
caused by reusing old objects. Without garbage collection, safe memory
reclamation for lock-free objects is considerably more interesting, as shown
by Michael [109].

One example of wait-free synchronization becoming more practical is
the series of papers by Kogan and Petrank [91, 92] and Timnat and Petrank
[149].

The TOCTTOU race vulnerability in Sun’s mail delivery software was
reported in 1992 by a group known as [8lgm]. Their web site has gone offline,
but the contents can still be accessed at the Internet Archive’s “Wayback
Machine”; also, you should be able to find a copy of the advisory somewhere
on the web by searching for [8lgm]-Advisory-5.UNIX.mail.24-Jan-1992.

https://web.archive.org/web/19961220183145/http://www.8lgm.org
https://web.archive.org/web/19961220183145/http://www.8lgm.org
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Chapter 5

Atomic Transactions

5.1 Introduction

In Chapter 4, I described mutual exclusion as a mechanism for ensuring that
an object undergoes a sequence of invariant-preserving transformations and
hence is left in a state where the invariant holds. (Such states are called
consistent states.) In particular, this was the idea behind monitors. Any
monitor object is constructed in a consistent state. Any public operation
on the monitor object will work correctly when invoked in a consistent state
and will reestablish the invariant before returning. No interleaving of actions
from different monitor operations is allowed, so the monitor’s state advances
from one consistent state to the next.

In this chapter, I will continue on the same theme of invariant-preserving
state transformations. This time through, though, I will address two issues
I ignored in Chapter 4:

1. Some invariants span multiple objects; rather than transforming a
single object from a consistent state to another consistent state, you
may need to transform a whole system of objects from one consistent
state to the next. For example, suppose you use objects to form a
rooted tree, with each object knowing its parent and its children, as
shown in Figure 5.1. An invariant is that X has Y as a child if and
only if Y has X as its parent. An operation to move a node to a new
position in the tree would need to change three objects (the node, the
old parent, and the new parent) in order to preserve the invariant.

2. Under exceptional circumstances an operation may fail, that is, be
forced to give up after doing only part of its invariant-preserving trans-
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(a) (b) (c)

Parent points to child Child points to parent

D

E

C

A

B D

E

C

A

BD

E

C

A

B

Figure 5.1: Rooted trees with pointers to children and parents: (a) example
satisfying the invariant; (b) invariant violated because E’s parent is now C,
but E is still a child of D and not of C; (c) invariant restored because the
only child pointer leading to E again agrees with E’s parent pointer. The
complete transformation from Part (a) to Part (c) requires modifications to
nodes C, D, and E.

formation. For example, some necessary resource may be unavailable,
the user may press a Cancel button, the input may fail a validity check,
or a hardware failure may occur. Nonetheless, the system should be
left in a consistent state.

An atomic transaction is an operation that takes a system from an ob-
servable initial state to an observable final state, without any intermediate
states being observable or perturbable by other atomic transactions. If a
system starts with a consistent initial state and modifies that state using
only invariant-preserving atomic transactions, the state will remain consis-
tent. Atomicity must be preserved in the face of both concurrency and
failures. That is, no transaction may interact with a concurrently running
transaction nor may any transaction see an intermediate state left behind
by a failed transaction. The former requirement is known as isolation. The
latter requirement lacks a generally agreed-upon name; I will call it failure
atomicity.

Often, atomic transactions are simply called transactions. In fact, ac-
cording to many authors, atomicity is part of the definition of a transaction.
Unfortunately, there are other authors for whom transactions need not be
atomic. Because of this lack of agreement on the nomenclature, I have in-
troduced this chapter with the full phrase “atomic transactions” to make



5.1. INTRODUCTION 163

my focus clear. Henceforth, I will skip the modifier “atomic” and use only
“transactions,” with the understanding that they are atomic unless other-
wise specified.

Many transaction systems require not only atomicity, but also durability.
A transaction is durable if the state of a successfully completed transaction
remains intact, even if the system crashes afterward and has to be rebooted.
Each successful transaction ends with an explicit commit action, which sig-
nifies that the consistent final state has been established and should be
made visible to other transactions. With durable transactions, if the system
crashes after the commit action, the final transformed state will be intact af-
ter system restart. If the crash occurs before the commit action, the system
will be back in the initial, unchanged state after restart.

Note that failure atomicity is slightly simpler for nondurable transac-
tions. Atomicity across system crashes and restarts is easy to arrange: by
clearing all memory on restart, you can guarantee that no partially updated
state is visible after the restart—no updates at all, partial or otherwise,
will remain. This clearing of memory will happen automatically if the com-
puter’s main semiconductor DRAM memory is used, because that memory
is volatile, that is, it does not survive reboots. (Strictly speaking, volatility
means the memory does not survive a loss of power; reboots with the power
left on generally clear volatile memory as well, however.)

Even nondurable transactions must ensure failure atomicity for less dra-
matic failures in which the system is not rebooted. For example, a trans-
action might do some updates, then discover invalid input and respond by
bailing out. To take another example, recovering from a detected deadlock
might entail aborting one of the deadlocked transactions. Both situations
can be handled using an explicit abort action, which indicates the transac-
tion should be terminated with no visible change made to the state. Any
changes already made must be concealed, by undoing them.

In 1983, Härder and Reuter coined a catchy phrase by saying that
whether a system supports transactions is “the ACID test of the system’s
quality.” The ACID acronym indicates that transactions are atomic, con-
sistent, isolated, and durable. This acronym is quite popular, but somewhat
redundant. As you have seen, a transaction system really only provides
two properties: atomicity and durability. Consistency is a property of sys-
tem states—a state is consistent if the invariants hold. Transactions that are
written correctly (so each preserves invariants) will leave the state consistent
if they execute atomically. Isolation simply is another name for atomicity
in the face of concurrency: concurrent transactions must not interact.

The properties of atomicity and durability refer to transactions, inde-
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pendent of the objects on which the transactions operate. Returning to the
earlier rooted tree example of moving a node to a new position, a transaction
might modify the node, the old parent, and the new parent, all within one
atomic unit. This stands in contrast to monitors, each of which controls a
single object.

To obtain the requisite atomicity with monitors, the whole tree could
be a single monitor object, instead of having one monitor per node. The
tree monitor would have an operation to move one of its nodes. In general,
this approach is difficult to reconcile with modularity. Moreover, lumping
lots of data into one monitor creates a performance problem. Making the
whole system (or a large chunk of it) into one monitor would prevent any
concurrency. Yet it ought to be possible to concurrently move two nodes in
different parts of a tree. Atomic transactions allow concurrency of this sort
while still protecting the entire transformation of the system’s state.

This point is worth emphasizing. Although the system’s state remains
consistent as though only one transaction were executed at a time, transac-
tions in fact execute concurrently, for performance reasons. The transaction
system is responsible for maintaining atomicity in the face of concurrency.
That is, it must ensure that transactions don’t interact with one another,
even when running concurrently. Often the system will achieve this isolation
by ensuring that no transaction reads from any data object being modified
by another transaction. Enforcing this restriction entails introducing syn-
chronization that limits, but does not completely eliminate, the concurrency.

In Section 5.2, I will sketch several examples of the ways in which transac-
tions are used by middleware and operating systems to support application
programs. Thereafter, I present techniques used to make transactions work,
divided into three sections. First, Section 5.3 explains basic techniques for
ensuring the atomicity of transactions, without addressing durability. Sec-
ond, Section 5.4 explains how the mechanism used to ensure failure atomic-
ity can be extended to also support durability. Third, Section 5.5 explains
a few additional mechanisms to provide increased concurrency and coor-
dinate multiple participants cooperating on a single transaction. Finally,
Section 5.6 is devoted to security issues. The chapter concludes with exer-
cises, exploration and programming projects, and notes.

5.2 Example Applications of Transactions

The transaction concept is much more pervasive in middleware than in op-
erating systems. Therefore, of the three examples presented in the following
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subsections, the first two are from middleware systems. Sections 5.2.1 and
5.2.2 explain the two most long-standing middleware applications, namely
database systems and message-queuing systems. Moving into the operat-
ing systems arena, Section 5.2.3 explains the role that transactions play in
journaled file systems, which are the current dominant form of file system.

5.2.1 Database Systems

The transaction concept is most strongly rooted in database systems; for
decades, every serious database system has provided transactions as a service
to application programmers. Database systems are an extremely important
form of middleware, used in almost every enterprise information system.
Like all middleware, database systems are built on top of operating system
services, rather than raw hardware, while providing general-purpose services
to application software. Some of those services are synchronization services:
just as an operating system provides mutexes, a database system provides
transactions.

On the other hand, transaction services are not the central, defining
mission of a database system. Instead, database systems are primarily con-
cerned with providing persistent data storage and convenient means for ac-
cessing the stored data. Nonetheless, my goal in this chapter is to show how
transactions fit into relational database systems. I will cover just enough
of the SQL language used by such systems to enable you to try out the ex-
ample on a real system. In particular, I show the example using the Oracle
database system.

Relational database systems manipulate tables of data. In Chapter 4’s
discussion of deadlock detection, I showed a simple example from the Oracle
database system involving two accounts with account numbers 1 and 2. The
scenario (as shown in Figure 4.23 on page 133) involved transferring money
from each account to the other, by updating the balance of each account.
Thus, that example involved a table called accounts with two columns,
account_number and balance. That table can be created with the SQL
command shown here:

create table accounts (

account_number int primary key,

balance int);

Similarly, you can initialize account 1 to $750 and account 2 to $2250 by
using the following commands:
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insert into accounts values (1, 750);

insert into accounts values (2, 2250);

At this point, you can look at the table with the select command:

select * from accounts;

and get the following reply:

ACCOUNT_NUMBER BALANCE

-------------- ----------

1 750

2 2250

(If you are using a relational database other than Oracle, the format of the
table may be slightly different. Of course, other aspects of the example may
differ as well, particularly the deadlock detection response.)

At this point, to replicate the deadlock detection example from Fig-
ure 4.23, you will need to open up two different sessions connected to the
database, each in its own window. In the first session, you can debit $100
from account 1, and in the second session you can debit $250 from account 2.
(See page 133 for the specific SQL commands.) Now in session one, try to
credit the $100 into account 2; this is blocked, because the other session has
locked account 2. Similarly, session two is blocked trying to credit its $250
into account 1, creating a deadlock, as illustrated in Figure 5.2. As you
saw, Oracle detects the deadlock and chooses to cause session one’s update
request to fail.

Having made it through all this prerequisite setup, you are in a position
to see the role that transactions play in situations such as this. Each of the
two sessions is processing its own transaction. Recall that session one has
already debited $100 from account 1 but finds itself unable to credit the
$100 into account 2. The transaction cannot make forward progress, but on
the other hand, you don’t want it to just stop dead in its tracks either. Stop-
ping would block the progress of session two’s transaction. Session one also
cannot just bail out without any cleanup: it has already debited $100 from
account 1. Debiting the source account without crediting the destination
account would violate atomicity and make customers angry besides.

Therefore, session one needs to abort its transaction, using the rollback
command. Aborting will back out of the transaction’s earlier debiting of
$100 from account 1 and release its lock on that account. As a result,
session two’s attempt to credit $250 into account 1 can finally stop hanging
and complete. Continuing my earlier tradition of showing session one at the
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Try debiting $100 from account 1

Completes, leaving account 1 locked

Try crediting $100 to account 2

Session 1

Blocks, waiting for account 2

Deadlock!

Try debiting $250 from account 2

Completes, leaving account 2 locked

Try crediting $250 to account 1

Session 2

Blocks, waiting for account 1

Figure 5.2: Two transfer transactions deadlock when each waits for exclusive
access to the account for which the other already has obtained exclusive
access. In this diagram, the vertical dimension represents the passage of
time.
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left margin and session two indented four spaces, the interaction would look
like:

SQL> rollback;

Rollback complete.

1 row updated.

Of course, whoever was trying to transfer $100 from account 1 to ac-
count 2 still wants to do so. Therefore, after aborting that transaction, you
should retry it:

SQL> update accounts set balance = balance - 100

where account_number = 1;

This command will hang, because session two’s transaction now has both
accounts locked. However, that transaction has nothing more it needs to
do, so it can commit, allowing session one to continue with its retry:

SQL> commit;

Commit complete.

1 row updated.

SQL> update accounts set balance = balance + 100

where account_number = 2;

1 row updated.

SQL> commit;

Commit complete.

SQL> select * from accounts;

ACCOUNT_NUMBER BALANCE

-------------- ----------

1 900

2 2100



5.2. EXAMPLE APPLICATIONS OF TRANSACTIONS 169

Notice that at the end, the two accounts have been updated correctly. For
example, account 1 does not look as though $100 was debited from it twice—
the debiting done in the aborted transaction was wiped away. Figure 5.3
illustrates how the transactions recover from the deadlock.

In a large system with many accounts, there may be many concurrent
transfer transactions on different pairs of accounts. Only rarely will a dead-
lock situation such as the preceding example arise. However, it is nice to
know that database systems have a clean way of dealing with them. Any
transaction can be aborted, due to deadlock detection or any other reason,
and retried later. Moreover, concurrent transactions will never create in-
correct results due to races; that was why the database system locked the
accounts, causing the temporary hanging (and in one case, the deadlock)
that you observed.

5.2.2 Message-Queuing Systems

Message-queuing systems form another important class of middleware, and
like database systems, they support the transaction concept. Developers
of large-scale enterprise information systems normally use both forms of
middleware, although message-queuing systems are more avoidable than
database systems. As with database systems, the primary mission of mes-
sage queuing is not the support of transactions. Instead, message-queuing
systems specialize in the provision of communication services. As such, I will
discuss them further in Chapter 10, as part of a discussion of the broader
family of middleware to which they belong: messaging systems or message-
oriented middleware (MOM ).

A straightforward application of messaging consists of a server accessed
through a request queue and a response queue. As shown in Figure 5.4,
the server dequeues a request message from the request queue, carries out
the required processing, and enqueues a response message into the response
queue. (Think about an office worker whose desk has two baskets, labeled
“in” and “out,” and who takes paper from one, processes it, and puts it in
the other.)

These three steps (dequeue, process, enqueue) are grouped together as
an atomic transaction. If any of the three steps fail, the request message
is left in the input queue, ready to be retried. No request will be lost, nor
will there ever be visible signs of repeated processing, such as duplicated
response messages. (Of course, some causes of failure will affect retries
as well. For that reason, realistic systems generally keep count of retries
and after a while divert the request message, for example, into a human
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Deadlock detected-crediting fails

Roll back

Try debiting $100 from account 1

Blocks, waiting for account 1

Completes, leaving account 1 locked

Try crediting $100 to account 2

Completes, leaving account 2 locked

Commit

Session 1

Deadlock!

Blocks, waiting for account 2

Crediting completes, leaving
account 1 locked

Commit

Blocks, waiting for account 1

Session 2

Try crediting $250 to account 1

From
 figu

re 5.2

Figure 5.3: Transactions recover from their deadlock when one rolls back,
releasing the lock it holds. As in the prior figure, the vertical dimension
represents the passage of time.
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(a)

Request queue Response queue

Server

(b)

Figure 5.4: An analogy: (a) a server dequeues a message from its request
queue, processes the request, and enqueues a message into the response
queue; (b) an office worker takes paper from the In basket, processes the
paperwork, and puts it into the Out basket.

troubleshooter’s request queue.)
Message-queuing systems also provide durability, so that even if the sys-

tem crashes and restarts, each request will generate exactly one response.
In most systems, applications can opt out of durability in order to reduce
persistent storage traffic and thereby obtain higher performance.

To provide greater concurrency, a system may have several servers de-
queuing from the same request queue, as shown in Figure 5.5. This config-
uration has an interesting interaction with atomicity. If the dequeue action
is interpreted strictly as taking the message at the head of the queue, then
you have to wait for the first transaction to commit or abort before you can
know which message the second transaction should dequeue. (If the first
transaction aborts, the message it tried to dequeue is still at the head of
the queue and should be taken by the second transaction.) This would pre-
vent any concurrency. Therefore, message-queuing systems generally relax
queue ordering a little, allowing the second message to be dequeued even
before the fate of the first message is known. In effect, the first message is
provisionally removed from the queue and so is out of the way of the second
message. If the transaction handling the first message aborts, the first mes-
sage is returned to the head of the queue, even though the second message
was already dequeued.

More advanced workflow systems may include several processing steps,
with each processing step connected to the next by an intermediate message
queue. In these systems, each processing stage is treated as a separate
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Request queue Response queue

Server

Server

Server

Figure 5.5: Several message-driven servers in parallel can dequeue from a
common request queue and enqueue into a common response queue. To
allow concurrent operation, messages need not be provided in strict first-in,
first-out order.

transaction. If the transaction commits, that stage’s input is gone from its
inbound queue, and its output is in the outbound queue. Seen as a whole,
the workflow may not exhibit atomicity. For example, failure in a later
processing stage will not roll back an earlier stage.

Consider a sale of merchandise as an example workflow, as shown in Fig-
ure 5.6. One transaction might take an incoming order, check it for validity,
and generate three output messages, each into its own outbound queue: an
order confirmation (back to the customer), a billing record (to the accounts
receivable system), and a shipping request (to the shipping system). Another
transaction, operating in the shipping system, might dequeue the shipping
request and fulfill it. If failure is detected in the shipping transaction, the
system can no longer abort the overall workflow; the order confirmation and
billing have already been sent. Instead, the shipping transaction has no al-
ternative but to drive the overall workflow forward, even if in a somewhat
different direction than hoped for. For example, the shipping transaction
could queue messages apologizing to the customer and crediting the pur-
chase price back to the customer’s account. Figure 5.7 shows the workflow
with these extra steps.

Even in a system in which one transaction may bill the customer only
to have a later compensating transaction refund the billed amount, using
atomic transactions simplifies application programming. Imagine how com-
plex it would be to reason about a large workflow if each individual process-
ing stage could fail midway through or could interact with other concurrently
executing stages. By treating each workflow stage as an atomic transaction,
a messaging system considerably reduces the application designer’s cognitive
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Order 
processing

Accounts 
receivable

Shipping 
system

CustomerIncoming
orders

Billing records

Order
confirmations

Shipping
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Figure 5.6: In this simplified workflow for selling merchandise, processing a
single order produces three different responses. The response queues from
the order-processing step are request queues for subsequent steps.

Order 
processing

Accounts 
receivable

Shipping 
system

CustomerIncoming
orders

Billing records

Order
confirmations

Shipping
requests Credits

Apologies

Figure 5.7: In this workflow, a failure in shipping must produce compensat-
ing responses, as it cannot abort the overall workflow. The compensating
responses credit the customer’s account for the previously debited amount
and send an apology to the customer indicating that the previously con-
firmed order will not be filled after all.
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burden. A diagram, such as Figure 5.7, can provide an accurate abstraction
of the system’s observable behaviors by showing the system as processing
stages linked by message queues.

Finally, consider how the sales workflow keeps track of available mer-
chandise, customer account balances, and other information. You should be
able to see that individual processing stages of a workflow will frequently
have to use a database system. As such, transactions will involve both mes-
sage queues and databases. Atomicity needs to cover both; if a transaction
aborts, you want the database left unchanged and the request message left
queued. In Section 5.5.2, I will explain how this comprehensive atomicity
can be achieved by coordinating the systems participating in a transaction.

5.2.3 Journaled File Systems

The transaction concept has been employed in middleware both longer and
more extensively than in operating systems. However, one application in
operating systems has become quite important. Most contemporary oper-
ating systems provide file systems that employ atomic transactions to at
least maintain the structural consistency of the file system itself, if not the
consistency of the data stored in files. These file systems are known as jour-
naled file systems (or journaling file systems) in reference to their use of an
underlying mechanism known as a journal. I will discuss journals in Sections
5.3.2 and 5.4 under their alternative name, logs. Examples of journaled file
systems include NTFS, used by Microsoft Windows; HFS Plus, used by Mac
OS X; and ext3fs, reiserfs, JFS, and XFS, used by Linux. (The latter two
originated in proprietary UNIX systems: JFS was developed by IBM for
AIX, and XFS was developed by SGI for IRIX.) File systems that are not
journaled need to use other techniques, which I describe in Section 8.7, to
maintain the consistency of their data structures.

File systems provide a more primitive form of data storage and access
than database systems. As you will see in Chapter 8, contemporary operat-
ing systems generally treat a file as an arbitrarily large, potentially extensible
sequence of bytes, accessed by way of a textual name. The names are orga-
nized hierarchically into nested directories or folders. Typical operations on
files include create, read, write, rename, and delete.

Underlying this simple abstraction are some largely invisible data struc-
tures, known as metadata, that help locate and organize the data. For
example, because each file can grow in size, the file system must be free to
store different parts of a file in different locations. As such, the file system
must store metadata for each file indicating where each portion of the file is
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located. Moreover, the file system must store information concerning what
parts of the storage are in use, so that it can allocate unused space for a file
that is growing.

The existence of this metadata means that even simple file operations can
involve several updates to the information in persistent storage. Extending
a file, for example, must update both the information about free space and
the information about space allocated to that file. These structures need to
be kept consistent; it would be disastrous if a portion of the storage were
both used for storing a file and made available for allocation to a second file.
Thus, the updates should be done as part of an atomic transaction.

Some atomic transactions may even be visible to the user. Consider the
renaming of a file. A new directory entry needs to be created and an old
entry removed. The user wants these two changes done atomically, without
the possibility of the file having both names, or neither.

Some journaled file systems treat each operation requested by an appli-
cation program as an atomic and durable transaction. On such a system,
if a program asks the system to rename a file, and the rename operation
returns with an indication of success, the application program can be sure
that renaming has taken place. If the system crashes immediately afterward
and is rebooted, the file will have its new name. Said another way, the
rename operation includes commitment of the transaction. The application
program can tell that the transaction committed and hence is guaranteed
to be durable.

Other journaled file systems achieve higher performance by delaying
transaction commit. At the time the rename operation returns, the transac-
tion may not have committed yet. Every minute or so, the file system will
commit all transactions completed during that interval. As such, when the
system comes back from a crash, the file system will be in some consistent
state, but maybe not a completely up-to-date one. A minute’s worth of
operations that appeared to complete successfully may have vanished. In
exchange for this risk, the system has gained the ability to do fewer writes
to persistent storage, which improves performance. Notice that even in this
version, transactions are providing some value. The state found after re-
boot will be the result of some sequence of operations (even if possibly a
truncated sequence), rather than being a hodgepodge of partial results from
incomplete and unordered operations.

Often, journaled file systems protect only metadata; the application data
stored in files may be left in an inconsistent state after a crash. In particular,
some writes into the files may not have taken effect, and the writes that are
lost in this way are not necessarily the ones performed most recently. Even
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many journaled file system that do better than this offer only a guarantee
that all write operations that completed before a crash will be reflected in
the state after the crash. With this limited guarantee, if a program wants to
do multiple writes in an atomic fashion (so that all writes take place or none
do), the file system will not provide any assistance. However, a file system
can also be designed to fully support transactions, including allowing the
programmer to group multiple updates into a transaction. One example of
such a fully transactional file system is Transactional NTFS (TxF), which
was added to Microsoft Windows in the Vista version.

5.3 Mechanisms to Ensure Atomicity

Having seen how valuable atomic transactions are for middleware and op-
erating systems, you should be ready to consider how this value is actually
provided. In particular, how is the atomicity of each transaction ensured?
Atomicity has two aspects: the isolation of concurrent transactions from one
another and the assurance that failed transactions have no visible effect. In
Section 5.3.1, you will see how isolation is formalized as serializability and
how a particular locking discipline, two-phase locking, is used to ensure se-
rializability. In Section 5.3.2, you will see how failure atomicity is assured
through the use of an undo log.

5.3.1 Serializability: Two-Phase Locking

Transactions may execute concurrently with one another, so long as they
don’t interact in any way that makes the concurrency apparent. That is,
the execution must be equivalent to a serial execution, in which one trans-
action runs at a time, committing or aborting before the next transaction
starts. Any execution equivalent to a serial execution is called a serializable
execution. In this section, I will more carefully define what it means for
two executions to be equivalent and hence what it means for an execution
to be serializable. In addition, I will show some simple rules for using read-
ers/writers locks that guarantee serializability. These rules, used in many
transaction systems, are known as two-phase locking.

Equivalence, and hence serializability, can be defined in several somewhat
different ways. The definitions I give are the simplest I could find and
suffice to justify two-phase locking, which is the mechanism normally used
to achieve serializability in practical systems. However, you should be aware
that more general definitions are needed in order to accommodate more
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advanced concurrency control mechanisms. The notes at the end of the
chapter provide pointers to some of these more sophisticated alternatives.

Each transaction executes a sequence of actions. I will focus on those
actions that read or write some stored entity (which might be a row in a
database table, for example) and those actions that lock or unlock a read-
ers/writers lock. Assume that each stored entity has its own lock associated
with it. I will use the following notation:

• rj(x) means a read of entity x by transaction Tj ; when I want to show
the value that was read, I use rj(x, v), with v as the value.

• wj(x) means a write of entity x by transaction Tj ; when I want to
show the value being written, I use wj(x, v), with v as the value.

• sj(x) means an acquisition of a shared (that is, reader) lock on entity
x by transaction Tj .

• ej(x) means an acquisition of an exclusive (that is, writer) lock on
entity x by transaction Tj .

• sj(x) means an unlocking of a shared lock on entity x by transaction
Tj .

• ej(x) means an unlocking of an exclusive lock on entity x by transac-
tion Tj .

• uj(x) means an upgrade by transaction Tj of its hold on entity x’s lock
from shared status to exclusive status.

Each read returns the most recently written value. Later, in Section 5.5.1,
I will revisit this assumption, considering the possibility that writes might
store each successive value for an entity in a new location so that reads can
choose among the old values.

The sequence of actions executed by a transaction is called its history.
Because the transactions execute concurrently, if you were to write all their
actions in the order they happen, the transactions’ histories would be in-
terleaved. This time-ordered interleaving of all the transactions’ histories
is called the system’s history. All locking actions are shown at the time
when the lock is granted, not at the possibly earlier time when the lock is
requested. Assume that the histories include all the relevant actions. In
particular, if a transaction aborts and does some extra writes at that time
to undo the effect of earlier writes (as you will see in Section 5.3.2), those
undo writes must be explicitly listed in the history. Note also that I am
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implicitly assuming the transactions have no effects other than on storage;
in particular, they don’t do any other I/O.

Let’s look at some examples. Suppose that x and y are two variables
that are initially both equal to 5. Suppose that transaction T1 adds 3 to each
of the two variables, and transaction T2 doubles each of the two variables.
Each of these transactions preserves the invariant that x = y.

One serial history would be as follows:

e1(x), r1(x, 5), w1(x, 8), e1(x), e1(y), r1(y, 5), w1(y, 8), e1(y),

e2(x), r2(x, 8), w2(x, 16), e2(x), e2(y), r2(y, 8), w2(y, 16), e2(y)

Before you go any further, make sure you understand this notation; as di-
rected in Exercise 5.2, write out another serial history in which transaction
T2 happens before transaction T1. (The sequence of steps within each trans-
action should remain the same.)

In the serial history I showed, x and y both end up with the value 16.
When you wrote out the other serial history for these two transactions, you
should have obtained a different final value for these variables. Although
the invariant x = y again holds, the common numerical value of x and
y is not 16 if transaction T2 goes first. This makes an important point:
transaction system designers do not insist on deterministic execution, in
which the scheduling cannot affect the result. Serializability is a weaker
condition.

Continuing with the scenario in which T1 adds 3 to each variable and T2
doubles each variable, one serializable—but not serial—history follows:

e1(x), r1(x, 5), w1(x, 8), e1(x), e2(x), r2(x, 8), w2(x, 16), e2(x),

e1(y), r1(y, 5), w1(y, 8), e1(y), e2(y), r2(y, 8), w2(y, 16), e2(y)

To convince others that this history is serializable, you could persuade them
that it is equivalent to the serial history shown previously. Although transac-
tion T2 starts before transaction T1 is finished, each variable still is updated
the same way as in the serial history.

Because the example transactions unlock x before locking y, they can
also be interleaved in a nonserializable fashion:

e1(x), r1(x, 5), w1(x, 8), e1(x), e2(x), r2(x, 8), w2(x, 16), e2(x),

e2(y), r2(y, 5), w2(y, 10), e2(y), e1(y), r1(y, 10), w1(y, 13), e1(y)

Here, the invariant x = y is broken: at the end, x is equal to 16, but y is
equal to 13. Thus, this history is not equivalent to either of the two serial
histories.
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My primary goal in this section is to show how locks can be used in a
disciplined fashion that rules out nonserializable histories. (In particular,
you will learn that in the previous example, x should not be unlocked until
after y is locked.) First, though, I need to formalize what it means for two
histories to be equivalent, so that the definition of serializability is rigorous.

I will make two assumptions about locks:

1. Each transaction correctly pairs up lock and unlock operations. That
is, no transaction ever locks a lock it already holds (except upgrading
from shared to exclusive status), unlocks a lock it doesn’t hold, or
leaves a lock locked at the end.

2. The locks function correctly. No transaction will ever be granted a
lock in shared mode while it is held by another transaction in exclusive
mode, and no transaction will ever be granted a lock in exclusive mode
while it is held by another transaction in either mode.

Neither of these assumptions should be controversial.
Two system histories are equivalent if the first history can be turned into

the second by performing a succession of equivalence-preserving swap steps.
An equivalence-preserving swap reverses the order of two adjacent actions,
subject to the following constraints:

• The two actions must be from different transactions. (Any transac-
tion’s actions should be kept in their given order.)

• The two actions must not be any of the following seven conflicting
pairs:

1. ej(x), sk(x)

2. ej(x), ek(x)

3. sj(x), ek(x)

4. sj(x), uk(x)

5. wj(x), rk(x)

6. rj(x), wk(x)

7. wj(x), wk(x)

Forbidding swaps of the first four pairs ensures locks continue properly
functioning: Tk may not lock x’s lock until after Tj has unlocked it.
The next two conflicts ensure the read actions return the correct values:
swapping a read and a write would change which value the read action



180 CHAPTER 5. ATOMIC TRANSACTIONS

returns. The final conflict ensures that x is left storing the correct
value.

Figure 5.8 illustrates some of the constraints on equivalence-preserving
swaps. Note that in all the conflicts, the two actions operate on the same
stored entity (shown as x); any two operations on different entities by dif-
ferent transactions can be reversed without harm. In Exercise 5.3, show
that this suffices to prove that the earlier example of a serializable history
is indeed equivalent to the example serial history.

Even if two actions by different transactions involve the same entity, they
may be reversed without harm if they are both reads. Exercise 5.4 includes
a serializable history where reads of an entity need to be reversed in order
to arrive at an equivalent serial history.

I am now ready to state the two-phase locking rules, which suffice to
ensure serializability. For now, concentrate on understanding what the rules
say; afterward I will show that they suffice. A transaction obeys two-phase
locking if:

• For any entity that it operates on, the transaction locks the corre-
sponding lock exactly once, sometime before it reads or writes the
entity the first time, and unlocks it exactly once, sometime after it
reads or writes the entity the last time.

• For any entity the transaction writes into, either the transaction ini-
tially obtains the corresponding lock in exclusive mode, or it upgrades
the lock to exclusive mode sometime before writing.

• The transaction performs all its lock and upgrade actions before per-
forming any of its unlock actions.

Notice that the two-phase locking rules leave a modest amount of flex-
ibility regarding the use of locks. Consider the example transactions that
read and write x and then read and write y. Any of the following transaction
histories for T1 would obey two-phase locking:

• e1(x), r1(x), w1(x), e1(y), e1(x), r1(y), w1(y), e1(y)

• e1(x), e1(y), r1(x), w1(x), r1(y), w1(y), e1(y), e1(x)

• s1(x), r1(x), u1(x), w1(x), s1(y), r1(y), u1(y), w1(y), e1(x), e1(y)

In Exercise 5.6, you can come up with several additional two-phase possi-
bilities for this transaction.
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(a)

(b)

(c)

(d)

…, r1(x),   r1(y), …

…, r1(x),   w2(x), …

…, r1(x),   w2(y), …

…, r1(x),   r2(x), …

Figure 5.8: Illegal and legal swaps: (a) illegal to swap steps from one trans-
action; (b) illegal to swap two conflicting operations on the same entity; (c)
legal to swap operations on different entities by different transactions; (d)
legal to swap nonconflicting operations by different transactions.

If the programmer who writes a transaction explicitly includes the lock
and unlock actions, any of these possibilities would be valid. More com-
monly, however, the programmer includes only the reads and writes, without
any explicit lock or unlock actions. An underlying transaction processing
system automatically inserts the lock and unlock actions to make the pro-
gramming simpler and less error-prone. In this case, the system is likely to
use three very simple rules:

1. Immediately before any read action, acquire the corresponding lock in
shared mode if the transaction doesn’t already hold it.

2. Immediately before any write action, acquire the corresponding lock
in exclusive mode if the transaction doesn’t already hold it. (If the
transaction holds the lock in shared mode, upgrade it.)

3. At the very end of the transaction, unlock all the locks the transaction
has locked.

You should be able to convince yourself that these rules are a special case of
two-phase locking. By holding all the locks until the end of the transaction,
the system need not predict the transaction’s future read or write actions.

I still need to prove that two-phase locking suffices to ensure serializabil-
ity. Recall that a history is serializable if it is equivalent to a serial history.
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Thus, I need to show that so long as two-phase locking is followed, you
can find a sequence of equivalence-preserving swaps that will transform the
system history into a serial one. Please understand that this transforma-
tion of the history into a serial one is just a proof technique I am using to
help understand the system, not something that actually occurs during the
system’s operation. Transaction systems are not in the business of forcing
transactions to execute serially; concurrency is good for performance. If
anything, the running transaction system is doing the reverse transforma-
tion: the programmer may have thought in terms of serial transactions, but
the system’s execution interleaves them. I am showing that this interleaving
is equivalence-preserving by showing that you can back out of it.

To simplify the proof, I will use the following vocabulary:

• The portion of the system history starting with Tj ’s first action and
continuing up to, but not including, Tj ’s first unlock action is phase
one of Tj .

• The portion of the system history starting with Tj ’s first unlock action
and continuing up through Tj ’s last action is phase two of Tj .

• Any action performed by Tk during Tj ’s phase one (with j 6= k) is
a phase one impurity of Tj . Similarly, any action performed by Tk
during Tj ’s phase two (with j 6= k) is a phase two impurity of Tj .

• If a transaction has no impurities of either kind, it is pure. If all
transactions are pure, then the system history is serial.

My game plan for the proof is this. First, I will show how to use
equivalence-preserving swaps to purify any one transaction, say, Tj . Sec-
ond, I will show that if Tk is already pure, purifying Tj does not introduce
any impurities into Tk. Thus, you can purify the transactions one at a time,
without having to worry about wrecking the transactions purified earlier.

If Tj is impure, you can purify it by first removing any phase one impuri-
ties and then any phase two impurities. To remove the phase one impurities,
you can remove the leftmost one, and then repeat with the new leftmost one,
until all are gone. The leftmost phase one impurity of Tj must be preceded
by an action of Tj . I will show that those two actions can be reversed by an
equivalence-preserving swap. That moves the leftmost impurity further to
the left. If this swapping is done repeatedly, the impurity will percolate its
way further and further to the left until it passes the first operation of Tj ,
at which point it will cease to be an impurity of Tj . Phase two impurities
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can be removed similarly, starting with the rightmost one, by percolating
them to the right until they pass the last operation of Tj .

I need to show that the leftmost phase one impurity of Tj can be swapped
with its left-hand neighbor, and that the rightmost phase two impurity can
be swapped with it right-hand neighbor. Recall that to legally swap two
actions, they must be from different transactions, and they must not be one
of the seven forbidden conflicting pairs. In order to be the leftmost impurity
of Tj , an action must be performed by some other transaction, Tk, and have
an action from Tj as its left-hand neighbor. (A similar argument applies for
the rightmost impurity and its right-hand neighbor.) Thus, the actions are
definitely from different transactions, and the only remaining concern is the
seven conflicts.

For the leftmost phase one impurity and its left-hand neighbor, you
cannot have any of these conflicts:

1. ej(x), sk(x)

2. ej(x), ek(x)

3. sj(x), ek(x)

4. sj(x), uk(x)

because transaction Tj does not do any unlock actions in phase one. (Re-
call the definition of phase one.) Nor can you have any of the other three
conflicts:

5. wj(x), rk(x)

6. rj(x), wk(x)

7. wj(x), wk(x)

because the two-phase locking rules ensure that each read or write action is
performed only with the appropriate lock held. There is no way transactions
Tj and Tk can both hold the lock on x, with at least one of them being
in exclusive mode. Similar arguments rule out any conflict between the
rightmost phase two impurity and its right-hand neighbor; in Exercise 5.7,
you can fill in the details.

You have now seen that equivalence-preserving swap steps suffice to pu-
rify Tj by percolating each of its phase one impurities out to the left and
each of its phase two impurities out to the right. The goal is to serialize an
arbitrary system history that complies with the two-phase locking rules. I
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would like to pick one of its transactions that is impure and purify it, then
repeat with another and keep going until all the transactions are pure, that
is, until the system history has become serial. For this plan to work, I need
to be sure that purifying one transaction doesn’t wreck the purity of any
already pure transaction.

Purifying Tj doesn’t touch any actions that don’t lie between Tj ’s first
action and its last action. Thus, the only way purifying Tj could endanger
the existing purity of Tk is if Tk lies at least partly within Tj ’s span. However,
because Tk is pure, either all of it lies within Tj ’s span or none of it does, so
you need only consider the case that all of Tk lies within Tj ’s span. In fact,
you should be able to convince yourself of something stronger: if any action
of a pure transaction Tk lies within Tj ’s span, then all of Tk lies within a
single one of Tj ’s phases (either all within phase one, or all within phase
two).

If Tk’s actions occupy consecutive positions within phase one, purifying
Tj will percolate all of Tk’s actions to the left and leave them in consecutive
positions preceding the start of Tj . Similarly, if Tk is within phase two, all
its actions will move to the right and wind up as a consecutive block to the
right of Tj . Thus, Tk’s purity is preserved.

You can conclude, then, that any system history obeying the two-phase
locking rules is serializable. Recall that serializable histories are equivalent
to serial histories. In a serial history composed from invariant-preserving
transactions, each transaction moves the system from one consistent state
to another. Thus, so long as two-phase locking is used, the system will
behave as though it is moving from consistent state to consistent state.
In particular, this situation can be obtained simply by locking each entity
before operating on it the first time and holding all locks until the end of
the transaction.

Even though serializable histories are equivalent to serial histories, they
differ in one important regard. Unlike a serial history, a serializable history
may include concurrency between transactions. This allows the system to
achieve higher performance but entails a risk of deadlock that is not present
in serial execution. If deadlock occurs, one of the deadlocked transactions
needs to be aborted. This abortion is one way in which a transaction can
fail. Therefore, I will next turn to the question of how atomicity is preserved
in the face of transaction failures.
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5.3.2 Failure Atomicity: Undo Logging

Recall that atomic transactions may temporarily put the system in an in-
consistent state so long as they restore consistency before committing. For
example, in the middle of a transfer from one account to another, money
can temporarily “disappear” (not be in any account) so long as the money
has “reappeared” in the destination account by the time the transfer is over.
You have already seen one way to protect against harm from these tempo-
rary inconsistencies: by using two-phase locking, you prevent any concurrent
transaction from being affected by the inconsistent state. Now you need to
deal with another possible source of trouble: what if a transaction aborts
after making some, but not all, of its updates to the state? How can you
prevent later transactions from seeing an inconsistent state?

Transactions fail for many reasons. For example, the transfer transaction
might debit money from the source account, and then before crediting it
to the destination account, discover that the destination account doesn’t
exist. Alternatively, the system might detect a deadlock when trying to
lock the destination account. Either way, the transaction is aborted after
having debited the source account. To keep the transaction atomic (and
thus preserve consistency), you need to undo the debit from the source
account. That way, the failed transaction will have left the system’s state
unchanged. That is one of the two legal outcomes of an atomic transaction:
all or nothing.

Without support from a transaction processing system, failure atomicity
is extremely difficult to ensure. Programmers write a lot of complex and bug-
prone code in attempts to provide failure atomicity on their own. To see
how troublesome it can be, consider two ways to achieve failure atomicity
without a transaction processing system.

One approach is to try to test for all possible causes of failure before
taking any action. For example, test that the destination account exists, and
can be locked, before debiting from the source account. This can lead to poor
modularity. After all, the logical place to check the destination account is in
association with crediting that account. In addition, the advance checking
approach doesn’t cope well with concurrency. What if a concurrent thread
messed with the destination account after it had been checked?

Another approach is to test for each possible failure as it may occur
and provide manual cleanup actions. For example, if a failure occurs while
crediting the destination account, revert the money back into the source
account. The problem here is that in a complicated transaction, many failure
handlers are needed, as shown in Figure 5.9. The handler for the second
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success
failure

Action 1

Action 2

Action 3

Action 4

success

failure

Cleanup 1

failure

Cleanup 2
Cleanup 1success

failure

Cleanup 3
Cleanup 2
Cleanup 1

success

Figure 5.9: Failure atomicity can be ensured by testing for failure at each
step in a process and providing appropriate failure handlers. The failure
handler for each action needs to clean up all prior actions, that is, remove
their effects. This approach does not scale as well as the general undo log
used by transaction processing systems.
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action needs to undo the first action. The handler for the third action needs
to undo actions two and one. The handler for the fourth action needs to
undo actions three, two, and one. In Exercise 5.10, you can show that
failure handlers must share cleanup code to prevent a quadratic increase in
the amount of code for the transaction. Even if the failure handlers share
cleanup code, manual cleanup actions significantly complicate the structure
of the transaction.

By contrast, systems that support transactions (such as database sys-
tems) make failure atomicity completely transparent to the application pro-
grammer. If a transaction aborts, the system automatically cleans up the
state so that no other transaction will observe any effects from the aborted
transaction. In order to provide this service, the transaction system nor-
mally uses an undo log, as I will now describe.

Conceptually, each transaction has its own undo log, which records the
actions needed to back out of the changes that transaction has made to the
system’s state. Every time the transaction writes a new value into some
stored entity, it also adds an entry to the undo log, showing how the entity
can be restored to its prior state. The simplest way to do this is to record
the old value of the entity.

Suppose x = 5 and transaction T1 asks the transaction processing system
to write an 8 into x. In the prior section, you saw that behind the scenes this
action might do more than just write the 8 into x: it might first acquire an
exclusive lock on x. Now, you learn that the transaction processing system
will do even more behind the scenes: it will also add an entry to T1’s undo
log, showing that x needs to be set back to 5 to undo this step. That entry
in the undo log will list x as the entity in question, and 5 as its prior value.

If a transaction aborts, the transaction processing system will read back
through that transaction’s undo log entries, from the most recent to the
earliest, and carry out each of the reversions listed in the log. Be sure
you understand why the undo log entries need to be processed in reverse
chronological order. In Exercise 5.11, you can give an example where this
matters.

Notice that undoing write operations involves more writing; to undo
the write of 8 into x, you write 5 back into x. This has an important
consequence for two-phase locking. If a transaction writes an entity, it must
hold the corresponding lock in exclusive mode until the transaction has
finished aborting or committing. Shared-mode locks, for entities that the
transaction only reads, can be dropped earlier, subject to the usual two-
phase rules. However, the exclusive-mode locks need to be retained, because
so long as the possibility of aborting exists, the possibility of more writing
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exists.
I mentioned that conceptually each transaction has its own undo log.

Normal transaction processing systems actually store all the undo logs in
one combined log, with each entry added at the end. In order to efficiently
process the entries from a single transaction in reverse chronological order,
each entry contains a pointer to the previous entry from the same trans-
action. Each transaction keeps a pointer to its latest entry, as shown in
Figure 5.10. You’ll see in Section 5.4 that durability requires additional
logging; these extra log entries are also mixed into the same combined log
with all the transactions’ undo entries.

5.4 Transaction Durability: Write-Ahead Logging

Adding durability to transactions raises two new issues—one directly and
one indirectly:

1. The direct issue is durability itself. When a transaction commits, all
the data needs to be stored somewhere persistent and made available
again after system restart. (Persistent storage might be flash memory
or a disk drive.)

2. The indirect issue is that failure atomicity now needs more work.
When the system is restarted, it may need to clean up after trans-
actions that were in progress at the time the system crashed and that
had already done some writing to persistent storage.

The simplest way to ensure durability itself is to store all entities in per-
sistent storage; all writing by transactions goes directly into that persistent

T1's latest undo entry
next: •

T1

T2
T2's latest undo entry
next: •
T1's previous undo entry
next: •

...
...

...

Figure 5.10: Rather than having a separate undo log for each transaction,
the undo logs can be combined. In this case, the entries for any one trans-
action are chained together, as shown here, so that they can be efficiently
processed as though in a separate log.
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storage. This is not terribly efficient; consider, for example, the difference
in speed between disk drives and RAM. Therefore, I will explain a more
practical alternative later in this section. First, though, to have a correct
(if inefficient) solution, I need to address failure atomicity.

When a transaction aborts, the undo log allows the system to roll back
any writes the transaction did. If a transaction is in progress when the
system crashes, the transaction should be aborted at system restart time,
so that its partial updating of the system state is not visible. This abortion
upon restart can be done in the usual way, by using the undo log, if four
precautions are taken:

1. The undo log must be stored in persistent storage so that it will be
available when the system is restarted, for use in what is called recovery
processing.

2. Whenever a transaction writes a new value for an entity into persistent
storage, it must first write the undo record into the persistent undo
log, as shown in Figure 5.11. I previously did not emphasize the order
in which these two writes occur. Now it really matters, because the
system could crash between the first write and the second. Users
cannot risk the possibility that the entity has been written without
the undo record.

3. The undo operation (intended to restore an entity from its new value
to its old value) must be safe to use, even if the entity already has
its old value. In other words, the undo operation must be idempotent.
Idempotency is important if the system crashes after the undo record is
written, but before the entity itself is written. Recovery processing can
still “undo” the write that was never done. In addition, if the system
crashes again in the middle of recovery, you can start it all over again
from the beginning, without harm from repeated undo processing. The
form of undo record that I have shown, which records the entity’s old
value, naturally provides idempotency.

4. The recovery processing must have some way to figure out what trans-
actions were in progress and hence need aborting. The usual way to
do this is to keep all the undo logs in one combined log, which also
includes explicit records any time a transaction commits or aborts.
That way, recovery can read backward through the log, noting the
completed transactions and processing the undo entries that are from
other transactions.
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5

x was 5

5

x was 5

Undo log:

8

x:

Undo log:

x:

Undo log:

x:

Figure 5.11: In order to allow crash recovery, the undo log entry must be
made persistent before the write to the underlying object.

Because persistent storage is generally slower than main memory, real
transaction processing systems use a somewhat more sophisticated approach
to reduce the amount of writing to persistent storage. When an entity
is accessed the first time, it is copied into main memory. All reads and
writes happen in main memory, for high performance. Every once in a
while, the transaction system copies the latest version of the entity back
into persistent storage. The system may also occasionally evict an entity
from main memory, if it doesn’t seem active enough to merit the space
allocation. I will address this topic in Chapter 6, because it isn’t particular
to transactions.

Similarly, for performance reasons, log records are initially written into
main memory and only later copied to persistent storage. That way, a large
chunk of the log can be written to persistent storage at one time, which
improves the performance of devices such as disk drives.

Incorporating these performance improvements without changing any-
thing else would wreck atomicity and durability. When the system crashed,
almost any situation would be possible. Committed transactions might
have written their results only to nonpersistent memory, violating durability.
Noncommitted transactions might have written some values into persistent
storage, but not the corresponding undo log entries, violating atomicity. To
protect against these cases, you need to put some additional machinery in
place.
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The simplest approach to restoring correct operation is to enforce three
new rules:

1. No entity may be written back into persistent storage until the corre-
sponding undo log entry has been written into persistent storage.

2. The commit entry in the log must be written to persistent storage
before the commit operation is complete.

3. All entities must be written back into persistent storage before the
commit entry is written to the log.

The first rule ensures that all undo entries needed during recovery are avail-
able at recovery time. The second rule prevents the recovery process from
aborting a transaction that the user saw as committed before the crash. The
third rule ensures that committed transactions are durable.

The first two rules are hard to argue with; taken together, they are called
write-ahead logging (WAL). (Although these WAL rules are typical, some
systems do manage to work with variants of them. The end-of-chapter notes
provide pointers to the literature.) However, the third rule deserves closer
scrutiny.

Durability demands that any updated value a transaction provides for
an entity must be stored somewhere in persistent storage before that trans-
action can commit. However, the third rule seems to suggest a specific
location: the entity must be “written back” into persistent storage, that
is, stored in its usual location from which it was read. This leads to two
questions: is this specific choice of location necessary, and, is it desirable?

When a transaction commits, all its updates to entities must be stored
somewhere persistent. Moreover, if the updates are not stored in the enti-
ties’ usual locations, they must be somewhere that the recovery process can
locate. That way, if the system crashes and restarts, the recovery process
can bring the entities’ usual locations up to date, thereby allowing normal
operation to resume. Because the recovery process does its work by reading
the log, the log seems like an obvious alternative place to store committed
transactions’ updates.

This answers the earlier question of necessity. It is not necessary to
write a transaction’s updates into the main data entities’ persistent storage
before the transaction commits. Instead, the updates can be written to the
log as redo log entries. As long as the redo entries are in the log before the
commitment marker, and all of them are in persistent storage before the
commit operation completes, the system will ensure durability. Just as an
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undo log entry can be as simple as a record of the data entity’s old value, a
redo log entry can be as simple as a copy of the new value.

I still need to address the question of desirability. Is there any advantage
to writing redo log entries into persistent storage, rather than directly up-
dating the modified entities’ primary locations? To answer this, you need to
understand that many systems use disk as the only persistent storage and
that the slowest part of accessing a disk drive is the mechanical movements
needed to reach a particular place on the disk. Therefore, writing one large
block of data to a single location on disk is much faster than writing lots
of smaller pieces of data at individual locations. By using redo log entries,
the commit operation has to wait only for a single large write to disk: all
the new portions of the log (undo, redo, and commit) can get forced out in
a single disk operation. Without the redo log, the commit operation would
get held up waiting for lots of individual writes.

At this point, you have seen most of the mechanisms used by real trans-
action processing systems, at least in simplified overview form. Perhaps the
biggest performance issue I have omitted is the speed of recovery after a
crash. Using the mechanisms I have described thus far, the recovery process
would need to read the entire log, back to when the transaction process-
ing system started running. This is not practical for systems that run a
long time. Therefore, transaction processing systems all incorporate some
mechanism that puts a limit on how much of the log needs to be processed.

These mechanisms are generally referred to as checkpointing, because the
simplest (and historically earliest) approach is to create a checkpoint, that
is, a point at which the main persistent storage is brought to a consistent
state. No log entries prior to the checkpoint need to be retained. More
sophisticated checkpointing mechanisms avoid having to bring the system
into a consistent state, so that normal processing can always continue.

5.5 Additional Transaction Mechanisms

In Sections 5.3 and 5.4 you learned about the two primary mechanisms used
to support transactions: two-phase locking and logging. In this section, you
will extend your knowledge into two more advanced areas: how isolation
can be reduced in order to increase concurrency (Section 5.5.1) and how
multiple transaction participants can be coordinated using the two-phase
commit protocol (Section 5.5.2).
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5.5.1 Increased Transaction Concurrency: Reduced Isola-
tion

Two-phase locking ensures serializability, but at a price in concurrency, and
hence, throughput. Transactions may be forced to wait for locks. How big
a problem this is depends greatly on the workload mix.

Some systems exclusively process short transactions involving only a
few entities (such as the example of a transfer from one account to another).
Those systems will have no problem with two-phase locking, because a trans-
action will lock only a small portion of the data, and never for long. Thus,
there will be almost no contention.

Other systems exclusively process long-running, read-only transactions
involving most of the entities in the database. For example, mining histori-
cal business data for strategically useful patterns might exhibit this behav-
ior. Here again, two-phase locking will be no problem, because any number
of read-only transactions can coexist using the shared mode of the read-
ers/writers locks.

However, a mix of these two workloads—lots of little updates with some
big analysis—could be deadly. The analysis transactions could keep much
of the database locked for a long time, choking off the flow of updates.
This is particularly troubling, given that the updates are likely the mission-
critical part of the system. (Imagine an airline that can analyze its history
thoroughly but can’t book any new reservations.)

This problem is sufficiently serious that many businesses use two separate
database systems. One, the operational system, handles the mission-critical
short transactions, which may update the data. Periodically (such as each
night), data is transferred from the operational system to a data warehouse.
The warehouse holds historical data, generally not quite up to the present,
but close enough for analysis. Analysts can run arbitrarily long read-only
transactions on the warehouse. They can even directly run ad hoc queries
from an interactive session, something they would never dare do on the
operational system. (Imagine an analyst who types in some queries and
then goes home without typing commit; until the interactive session exceeds
a time limit and aborts, it will continue to hold locks.)

Valuable as this warehousing strategy may be, it avoids only the most
obvious manifestations of a more general problem; it does not provide a
complete solution. No perfect solution exists, but database systems provide
one other partial solution: transaction programmers can choose to sacrifice
serializability in order to attain greater concurrency.

Sacrificing serializability to increase concurrency does not mean the pro-
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grammers are sacrificing correctness for performance. Serializability is a
great simplification for a programmer trying to reason carefully enough
about a program to ensure its correctness. However, careful reasoning is
possible even for nonserializable execution, with enough additional mental
labor. Because such labor is neither free nor immune from error, serializable
execution ought to be the default, with other alternatives only considered
where performance is demonstrably inadequate.

Recall that under two-phase locking, transactions generally hold all locks
until the transaction commits or aborts. Suppose instead the transaction did
this only for exclusive locks (when writing); it would acquire a shared lock
before each read operation and release it immediately after the read. Many
database systems (such as Microsoft SQL Server and IBM DB2) offer this
as an option, called read committed. In fact, contrary to the SQL standard,
read committed is often the default mode for transactions; programmers
need to explicitly request serializability.

Even acquiring a shared lock ever so briefly has some value: it prevents
reading data written by a transaction that is still in progress, because that
transaction will hold the lock in exclusive mode. However, several strange
phenomena are possible with this relaxed isolation, which would not be
possible if serializability were enforced. The most well-known phenomenon
is “nonrepeatable read.” If a transaction reads an entity, and then later
reads the same entity again, it may find that the value has changed. This
can happen if between the two reads another transaction writes the entity
and commits.

Nonrepeatable read is often spoken about as though it were the only
problem arising from relaxed isolation. This is a dangerous misconcep-
tion: a programmer might think that in an application that can tolerate
nonrepeatable reads (for example, one that doesn’t read any entity twice),
serializability is superfluous. This is not true.

Consider, for example, a system with two variables, x and y. Transac-
tion T1 reads x’s value and writes it into y. Transaction T2 does the reverse:
it copies y into x. Someone doing both of these transactions would expect
x and y to be equal afterward—either of the transactions would suffice to
achieve that. Yet with short read locks, doing the two transactions concur-
rently could result in swapping x and y’s old values, as shown in Figure 5.12,
rather than making the two equal. In Exercise 5.12, you can come up with
a system history exhibiting this phenomenon.

Other database systems, such as Oracle and PostgreSQL, take a more
radical approach to relaxed isolation, known as multiversion concurrency
control (MVCC ). Each write action stores the new value for an entity in a
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x: y: 53

T1

T2

Figure 5.12: If transactions release each read lock as soon as they are done
reading the corresponding object, the execution may not be serializable. For
example, two transactions could swap x and y’s values, as shown here.

different location than the old value. Thus, a read action need not read the
most recent version: it can read an older version. In particular, a transaction
can read all entities (other than those it has written itself) from the version
that was most recently committed when the transaction started. Any writes
done since then by other transactions—whether committed or otherwise—
are completely ignored. No read locks are needed at all. This is known as
snapshot isolation. When a transaction using snapshot isolation obtains a
write lock and the entity being written was modified by some other transac-
tion that committed since the writing transaction started, the write request
is aborted with an error condition. The writing transaction must roll back
and restart.

It should be clear that snapshot isolation provides repeatable reads.
Therefore, some people, forgetting that nonrepeatable reads are only one
symptom of relaxed isolation, think that snapshot isolation suffices for se-
rializability. Regrettably, both Oracle and PostgreSQL foster this belief by
calling their snapshot isolation mode “serializable.” Neither offers true seri-
alizability, even as an option. For example, on either of these systems, one
transaction could copy x to y while another was copying y to x, even at the
highest isolation level.

5.5.2 Coordinated Transaction Participants: Two-Phase Com-
mit

A transaction processing system can be built using the mechanisms I have
described thus far: two-phase locking and a write-ahead log containing undo
and redo entries. However, you need one more mechanism if you want
to be able to coordinate multiple subsystems working together on shared
transactions. That mechanism is the two-phase commit protocol, which
I describe in this section. (Two-phase commit and two-phase locking are



196 CHAPTER 5. ATOMIC TRANSACTIONS

unrelated, other than that each happens to contain two phases.)
As an example of coordination, a system might include both a message-

queuing system and a relational database. Each uses the mechanisms I have
previously described in order to provide atomic and durable transactions.
However, you would like to be able to have a single transaction that first
dequeues a request message from one queue, then does some database oper-
ations, and finally writes a response message into another queue. All of this
should be atomic and durable, as a unit. For example, if something goes
wrong during database processing, the rollback not only should undo any
database changes, but also should restore the request message to its queue.

Transaction processing systems generally include a module specializing
in this coordination, known as a transaction manager, as well as the various
resource managers, such as message-queuing and database systems. The
managers communicate with one another using the two-phase commit pro-
tocol in order to ensure that all participants agree whether a transaction has
aborted or committed. In particular, if the transaction commits, it must be
durable in each resource manager.

Gray pointed out that the essence of two-phase commit is the same as
a wedding ceremony. First, the officiating party asks all the participants
whether they really want to go ahead with the commitment. After each of
them says “I do,” the officiating party announces that the commitment has
taken place.

In somewhat greater detail, the steps in the two-phase commitment pro-
tocol are as follows, and as shown in Figure 5.13, for the case of a successful
commitment:

1. When a new transaction begins, it registers with the transaction man-
ager.

2. In return, the transaction manager assigns an identifying transaction
context.

3. Whenever the transaction uses the services of a resource manager, it
presents its transaction context. (If the resource manager subcontracts
to another resource manger, it passes the transaction context along.)

4. When a resource manager sees a new transaction context for the first
time, it registers with the transaction manager as being involved in
that transaction. This is known as joining the transaction.

5. When the transaction wishes to commit, it contacts the transaction
manager.
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Figure 5.13: The two-phase commit protocol coordinates transaction par-
ticipants, as shown here and enumerated in the accompanying text. This
diagram shows only the case in which all resource managers indicate that it
is OK to commit, and so the transaction is committed.

6. The transaction manager knows all the involved resource managers
because of their earlier join messages. The transaction manager starts
phase one by asking each of those resource managers whether it is
prepared to commit.

7. When a resource manager is asked to prepare to commit, it checks
whether it has any reason not to. (For example, a database system
might check whether any consistency constraints were violated.) If the
resource manager detects a problem, it replies to the transaction man-
ager that the transaction should be aborted. If there is no problem,
the resource manager first makes sure the transaction’s updates are all
stored in persistent storage (for example, in redo log records). Then,
once this is complete, the resource manager indicates to the transac-
tion manager that the transaction can commit, so far as this resource
manager is concerned.

8. The transaction manager waits until it has received replies from all
the resource managers. If the replies indicate unanimous agreement
to commit, the transaction manager logs a commitment record and
notifies all the resource managers, which starts phase two.
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9. When a resource manager hears that the transaction is in phase two
of commitment, it logs its own commit record and drops any exclusive
locks it has been holding for the transaction. Once the transaction is
in phase two, there is no possibility it will abort and need to perform
undo actions. Even if the system crashes and restarts, the transaction
manager will see its own commitment log record and go forward with
phase two.

Each resource manager then sends an acknowledgment to the transac-
tion manager, indicating completion of the phase two activity. When
all of these acknowledgments are received, the transaction manager
logs completion of the commit. That way, after a crash and restart, it
will know not to bother redoing phase two.

On the other hand, if back in phase one the transaction manager hears a
request to abort from any resource manager or is forced to recover after a
crash and finds no commitment record, then it notifies the resource managers
to roll back the transaction, using their undo logs.

5.6 Security and Transactions

Transaction processing systems are often used for an enterprise’s mission-
critical operations. As such, a great deal of thought has gone into security
issues in transaction processing systems. However, many of the issues that
arise in these systems are not actually particular to the transaction mecha-
nism, per se. Here I will focus on security implications that stem from using
atomic transactions.

One security consequence of atomic transactions is salutary. A system
constructed out of atomic transactions is much easier to reason about than
a more general system would be. You saw in Chapter 4 that crackers can
exploit race conditions, which would otherwise almost never happen, in order
to subvert a system’s security design. A similar trick can be played by
forcing a non-atomic operation to fail after doing only some of its actions.
By using atomic transactions, the system’s designer excludes both of these
entire categories of vulnerabilities.

Furthermore, security is enhanced by using a general-purpose transaction
processing infrastructure, rather than trying to achieve atomicity through ad
hoc means. Nothing is more prone to security vulnerabilities than complex
code that is rarely used. You saw that achieving failure atomicity without a
general mechanism, such as the undo log, often involves considerable com-
plex, nonmodular code. (For example, see Exploration Project 5.7, which



5.6. SECURITY AND TRANSACTIONS 199

has you examine some Linux kernel source code.) And yet, this messy, bug-
prone code is never tested under normal circumstances, because it comes into
play only in the case of a failure. As such, bugs in it could go undetected
for years, until some cracker goes looking for them.

By contrast, a general-purpose infrastructure (such as is included in a
reputable database system) has presumably been well tested, for two rea-
sons. First, its correct operation is a central concern for its authors, rather
than peripheral. Second, the exact same infrastructure comes into play
in all situations; for example, undo logs are processed in deadlock recovery,
user-initiated aborts, and other failure situations. As such, testing the mech-
anism in one common situation provides some assurance of correct operation
in other, less common situations.

You have seen that one security guideline regarding transactions is sim-
ple: they should be used. Are there other, less simple and less positive
interactions between transactions and security? Unfortunately, yes. Trans-
actions are a very powerful abstraction mechanism; that is, they hide a
great deal of complexity behind a simple interface. An application pro-
grammer can think in terms of the simple interface and totally ignore the
complex underpinnings—except when those complex underpinnings have se-
curity implications. That is the great danger of any abstraction mechanism,
transactions included: it can blind you to what is really going on. Thus,
another security guideline is to go beyond the abstract view of transactions
and consider the underlying mechanisms discussed in this chapter.

One instance in which you need to think about transactions’ underpin-
nings occurs when you are reasoning about your system’s vulnerability to
denial of service attacks. Transaction processing systems do a great deal
of locking behind the scenes. Generally, they provide not only deadlock
detection, but also timeouts on locks. However, this doesn’t mean that a
subverted transaction couldn’t bring other transactions to their knees. Do
you really want to wait the full timeout period for each lock acquisition?

Worse, the usual way of handling locking problems is to roll back the
involved transactions and then restart them. If the problems are caused
by fluky coincidences, they will almost surely not recur on the second try.
However, if your system is being manipulated by a cracker, might you be put
in the position of repeatedly rolling back and retrying the same transactions?
If so, you not only are making no headway, but also are consuming great
quantities of resources, such as processing time and log space. After how
many retries should you give up?

Even aside from locking and retries, you need to understand your trans-
actions’ consumption of log space and other resources to be able to reason
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about denial of service attacks. Could an attacker trick you into filling up
your log space on disk?

Another pitfall would be to lose track of exactly what degree of isola-
tion your transactions enjoy relative to other concurrent computations. For
example, suppose you have a transaction that temporarily stores some con-
fidential information into a widely readable data entity, but then deletes
the information before committing. (Alternatively, the transaction may
store the information and then abort upon discovering the information is
confidential.) Does this suffice to protect the information from disclosure?
Maybe, maybe not. If your transaction is running in serializable isolation
(that is, with full two-phase locking), and so are all the concurrent computa-
tions, then the information is protected. However, if you allow an adversary
to run transactions that don’t acquire locks (for example, SQL’s “read un-
committed” isolation level), then you have not protected the confidential
information, no matter how serializable your own transaction is and how
careful it is to clean up all the data before committing.

Similarly, suppose your transactions rely on keeping the database consis-
tent (maintaining invariant properties) in order to operate correctly. Specif-
ically, if the database becomes inconsistent, your transactions can be tricked
into violating security policy. Are you safe if all the transactions have been
declared to use the “serializable” isolation level, and adversaries are pre-
vented from introducing additional transactions? Not necessarily. As I
mentioned earlier, if you are using the Oracle or PostgreSQL database sys-
tem, the “serializable” isolation level doesn’t actually provide serializability;
it provides only snapshot isolation. If you don’t understand that, and ex-
actly what snapshot isolation entails, you have no way to reason about the
kind of situations into which a cracker could manipulate your transactions.
Perhaps the cracker could arrange for your transactions to run in a nonseri-
alizable fashion that leaves the database inconsistent in a way that creates
a security vulnerability.

Most transaction processing systems are closed environments, where
crackers cannot easily introduce extra transactions or even analyze the exist-
ing transactions. This makes them somewhat resistant to attack. Perhaps
as a result, the risks mentioned here have generally remained theoretical
to date. No known exploits take advantage of programmers’ confusion be-
tween snapshot isolation and true serializability, for example. Nonetheless,
it is important to remember that abstraction can be dangerous. Unless you
understand what your system is really doing, you will not understand its
vulnerabilities.

One final pitfall for unwary programmers, with possible security impli-
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cations, is that a transaction manager can provide atomicity only for those
actions under its control. For example, throughout this chapter, I have as-
sumed that transactions don’t do any I/O aside from using storage devices.
Mature, full-featured transaction processing systems also allow controlled
I/O from transactions. Until a transaction commits, all its output is kept
impounded. Only upon commit is the output actually produced. (Some
systems go so far as to use special I/O hardware that can be tested after a
crash to see whether the output was produced yet.) In contrast to these full-
featured systems, many programmers build web-accessible applications (in
particular) with only a transactional database as support. In these systems,
as in this textbook, I/O is not automatically included in the transactional
protection. The application programmer needs to take responsibility for not
printing a valuable ticket and then allowing the purchase to be aborted, for
example.

Exercises

5.1 In the example of deadlock detection and recovery in a database, each
of the two transactions tried to update two account balances, then
commit. Suppose you add another step to the beginning of each trans-
action: immediately before the first update, display the full table, us-
ing select. Other than displaying the table, will this have any impact
on how the scenario plays out? Explain what will happen if the trans-
actions are executed in a system that is enforcing serializability using
two-phase locking. (Note that this cannot be tested using Oracle,
because it uses MVCC, rather than two-phase locking.)

5.2 I introduced serial histories with an example where transaction T1
added 3 to x and y and then transaction T2 doubled x and y. Write
out the other serial history, in which T2 comes first. Leave the sequence
of steps within each transaction the same as in the text, but change
the values appropriately.

5.3 Prove that the example serializable history is equivalent to the example
serial history by showing the result of each equivalence-preserving swap
step along the way from the serializable history to the serial history.

5.4 For each of the following histories, if the history is serializable, give an
equivalent serial history. Rather than listing all the steps in the serial
history, you can just list the transaction numbers (1 and 2; or 1, 2,
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and 3) in the appropriate order. If the history is not serializable, say
so.

(a) s1(x), r1(x), s1(x), e1(z), w1(z), e1(z), s2(y), r2(y), s2(y),
e2(x), w2(x), e2(x), s1(v), r1(v), s1(v), e1(y), w1(y), e1(y)

(b) s1(v), s2(v), r1(v), s2(x), r2(x), e2(z), w2(z), e2(z), s2(x),
s1(z), e1(x), r1(z), w1(x), r2(v), e2(y), w2(y), e1(x), s1(z),
s1(v), s2(v), e2(y)

(c) s1(x), s1(y), s2(x), s2(z), s3(y), s3(z), r1(x), r2(x), r2(z), r3(z),
r3(y), r1(y), s1(x), s1(y), s2(x), s2(z), s3(y), s3(z)

(d) e1(x), w1(x), e1(x), e2(x), w2(x), e2(x), e2(z), w2(z), e2(z),
e3(z), w3(z), e3(z), e3(y), w3(y), e3(y), e1(y), w1(y), e1(y)

(e) e1(x), r1(x), s2(y), r2(y), s2(y), w1(x), e1(y), w1(y), e1(y), e1(x),
s3(x), e3(y), r3(x), w3(y), e3(y), s3(x)

5.5 Of the serializable histories in Exercise 5.4, which ones obey the two-
phase locking rules?

5.6 As an example of two-phase locking, page 180 showed three different
two-phase histories for transaction T1, which reads and writes x and
then reads and writes y. Come up with at least five more histories for
this transaction that also obey the two-phase locking rules.

5.7 Explain why the rightmost phase two impurity of Tj cannot conflict
with its right-hand neighbor.

5.8 Explain why a pure transaction, Tk, with any of its actions occurring
as an impurity within the span of Tj must lie entirely within Tj ’s phase
one or entirely within Tj ’s phase two.

5.9 Some particular collections of transactions may not need two-phase
locking to ensure serializability. However, this is generally a fragile sit-
uation, which can be disturbed by the addition of another transaction—
even one obeying two-phase locking.

(a) Give two transaction histories, neither of which obeys the two-
phase locking rules, but which nonetheless always produce a se-
rializable system history, no matter how they are interleaved.

(b) Come up with a third transaction history, this one obeying two-
phase locking, such that when interleaved with the first two, a
nonserializable system history can result.



5.6. SECURITY AND TRANSACTIONS 203

5.10 I mentioned that providing failure atomicity without an undo log re-
sults in complex code. For example, putting an explicit succession of
cleanup actions into each action’s failure handling code can result in a
quadratic increase in code size. Flesh out the details of this argument
by proving that if Figure 5.9 on page 186 were extended to include n
actions, it would contain Θ(n2) cleanup steps.

5.11 Give an example of a transaction where it matters that undo log entries
are processed in reverse chronological order.

5.12 Suppose you use relaxed-isolation locking rules, where shared locks
are held only for the duration of the read action and then are released
immediately afterward. (Exclusive locks are still held until the end
of the transaction.) Give a system history of two transactions, each
complying with these locking rules, in which one copies x’s value to y
and the other copies y’s value to x. Starting with x = 3 and y = 5,
you should wind up with x = 5 and y = 3.

5.13 Redo Exercise 5.1, but instead of two-phase locking, assume that the
isolation level known as “read committed” is used and is implemented
with short read locks. Then do the exercise a third time, assuming
snapshot isolation. Only the latter can be tested using Oracle. (Ora-
cle’s read committed level doesn’t use short read locks.) To test snap-
shot isolation using Oracle, start each transaction with the following
command:

set transaction isolation level serializable;

5.14 Suppose that when a stored value is increased by 1, an undo record is
written that does not include the old value. Instead, the undo record
indicates that to undo the operation, the value should be decreased by
1. Is this idempotent? What problems might arise for crash recovery?

5.15 On page 180, three example histories are given for the transaction T1,
each of which obeys two-phase locking. Subsequently, page 181 lists
“three very simple rules” that suffice to ensure two-phase locking. Do
any of the three example histories obey those simple rules? If so, which
one(s)?

5.16 The wording of page 182’s definitions of “phase one” and “phase two”
(for two-phase locking) assumes that Tj contains at least one unlock
action. Explain why this is a safe assumption, provided that Tj con-
tains any actions at all.
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5.17 Suppose T1 writes new values into x and y and T2 reads the values
of both x and y. Is it possible for T2 to see the old value of x but
the new value of y? Answer this question three times: once assuming
two-phase locking, once assuming the “read committed” isolation level
is used and is implemented with short read locks, and once assuming
snapshot isolation. In each case, justify your answer.

Programming Project

5.1 Build a simple, inefficient Java class to support transactions that are
atomic (under both concurrency and failure) but not durable, and
without deadlock detection. The class should provide some state on
which the transactions can operate; for example, it might encapsulate
an array of integers, with put and get operations that the transactions
can use to modify and access slots within the array. The transactions
need to limit themselves to this state, accessed through these opera-
tions, in order to receive the guarantee of atomic execution.

You can use Java’s Threads as the transactions; your class can find out
which one is currently running using Thread.currentThread(). Your
class should take care of automatically acquiring and releasing read-
ers/writers locks (from Programming Project 4.10), in accordance with
two-phase locking. You will need to keep track of the locks each trans-
action holds and an undo log for each transaction. This per-transaction
information can be stored using a Map or using ThreadLocal objects.

One design option would be to provide three methods used to signal the
start of a transaction and its termination by commitment or abortion.
Another, more object-oriented, option would be to encapsulate each
transaction using an interface analogous to Runnable in the Java API,
with a run method that carries out the whole transaction. If that
method returns, the transaction commits; on the other hand, if the
method throws an exception, the transaction aborts.

As a client application for your class, you could write a program that
has multiple threads transferring money between bank accounts. The
encapsulated array of integers could be used to store account balances,
with the array indexes serving as account numbers. You should design
the collection of concurrent transfers to be deadlock free. However,
you should ensure that there are lots of concurrent transfers and lots
of cases where multiple transfers access the same account. That way,
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correct final balances provide good evidence that your class was suc-
cessful at warding off races. Also, you should include some transactions
that abort after making updates, so as to test the use of undo logs.

Exploration Projects

5.1 This Exploration Project has been removed because it was obsoleted
by changes in the Java EE Tutorial. This placeholder preserves the
numbering of the subsequent Exploration Projects.

5.2 On a Linux system that uses an ext3fs file system, for which you
have permission to change mount options, experiment with the per-
formance impact of journaling options. In particular, test a write-
intensive workload after mounting the file system with each of the
options data=journal, data=ordered, and data=writeback. These
control how much protection is provided for file data (as opposed to
metadata). With the first, all file operations are atomic and durable.
With the second, a crash may occasionally leave data updated without
the corresponding metadata update. With the third, it is even possible
for metadata to be updated but still be pointing at old data. Write a
report carefully explaining what you did and in which hardware and
software system context you did it, so that someone else could replicate
your results.

5.3 Carry out the scenario from Exercise 5.12 using a relational database
system. You should use two interactive sessions, in each of which you
have given the command set transaction isolation level read

committed. Be sure to end your commands in each session with
commit before you inspect the outcome.

5.4 Carry out the same scenario as in the previous project using Ora-
cle or PostgreSQL, with the transaction isolation level set to
serializable. As an optional extension, explore whether adding the
keywords for update to the end of each select command makes any
difference.

5.5 Try the same scenario as in the previous project, using Microsoft SQL
Server or IBM DB2, with the transaction isolation level set to
serializable. You should find that x and y are not swapped. What
happens instead? Does this depend on how you interleave the com-
mands in the two sessions?
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5.6 Come up with a plausible scenario where using snapshot isolation
rather than serializability results in a security vulnerability. You needn’t
show detailed SQL code, just an English description of what the data
would be and what the transactions would do with it. (Some more for-
mality might be helpful, of course.) Explain what an adversary would
need to do in order to exploit the vulnerability.

5.7 The quadratic growth in code size in Exercise 5.10 stems from the as-
sumption that each action’s failure handler has its own disjoint cleanup
code. This results in lots of repetitions of the same cleanup actions.
One way to keep explicit per-action cleanup code (rather than a gen-
eral undo log) and yet avoid quadratic growth is to share the common
cleanup code, so that each cleanup action only appears once. Fail-
ures later in the transaction just execute more of that shared cleanup
code than failures earlier in the transaction do. An example of this
pattern can be found in the procedure copy_process in the Linux
kernel source file kernel/fork.c. Skim this code (you don’t need
to understand most of it) and write a description of what program-
ming language mechanism it uses to execute the appropriate amount
of cleanup code, based on how late the failure occurs. Can you think
of an alternative programming language mechanism that could serve
the same purpose? (This exercise was written when the kernel was at
version 2.6.0-test11; however, the relevant aspects of this procedure
seem to be stable across quite a few versions.)

Notes

My treatment of transactions barely scratches the surface. If you are in-
terested in transactions, you should read at least one book devoted entirely
to the topic. The best to start with is probably by Bernstein and New-
comer [20]. After that, you can get a more detailed treatment of the un-
derlying principles from Weikum and Vossen [155] or of the practical details
(with lots of code) from Gray and Reuter [66].

The earliest electronic transaction processing systems are poorly docu-
mented in the open literature; apparently companies regarded techniques for
achieving atomicity and durability as proprietary. (Gray has suggested the
developers merely prioritized code over papers.) Only in the mid- to late
1970s did techniques such as I explain begin showing up in publications;
references [56, 123, 96, 65] still make good reading today. A longer, less
polished work by Gray [62] was quite influential; today, it is primarily of in-
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terest to historians, as much of the same material appears in more polished
form in his book with Reuter [66].

Härder and Reuter [69] introduced the acronym ACID. In the terminol-
ogy I presented, isolation is subsumed under atomicity. You should be aware
that some other authors instead treat atomicity as meaning only atomicity
in the face of failures. Lampson and Sturgis [96] use unitary to mean atomic
with respect to failures; however, this term does not seem to have caught
on.

The specific software versions used for the examples were Oracle Database
9i, PostgreSQL 7.4, and J2EE 1.4.

I showed how workflow systems can be configured with message queues
connecting the processing stages. A popular alternative is to connect each
processing stage with a centralized process manager, which coordinates the
workflow. For example, upon receiving a message from order processing, the
manager would send messages out to accounts receivable, shipping, and the
customer. The process manager allows centralized monitoring and control.
Process managers are sold as part of Enterprise Application Integration
(EAI) products such as TIBCO’s BusinessWorks.

I mentioned that my definitions of history, equivalence, and serializability
were chosen for simplicity and would not accommodate more sophisticated
concurrency control methods. If you wish to pursue this, the previously
cited book by Weikum and Vossen [155] provides a good foundation. Classic
works on the topic include those by Bernstein and Goodman [18, 19] and
by Stearns and Rosenkrantz [140]. Several works I will cite with regard to
relaxed isolation are also relevant here.

Two-phase locking seems to have first been published by Eswaran et
al. [56]. That same 1976 paper also brought to the fore a difficult aspect of
serializability in relational databases, which I have glossed over. Normally,
locking is done at the granularity of individual rows in database tables.
Suppose a transaction is operating on all accounts with zero balances. On
the surface, you might think it locks just those rows of the accounts table.
However, what if a concurrent transaction is doing a withdrawal that brings
another account’s balance down to zero? Or inserting a new account with
zero balance? This introduces the problem known as phantoms; a transac-
tion’s assumptions can be invalidated not only by changes to the rows the
transaction has read, but also by the addition of new rows. Eswaran et al.’s
proposed solution, predicate locks, was impractical if taken too literally but
provided the foundation for more practical techniques.

In describing durability and failure atomicity in the face of system crashes,
I differentiated volatile storage from persistent storage. Real systems need
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to consider these issues in even greater detail. For example, a system failure
while overwriting a block on disk may result in the disk having neither the
old nor the new version available. This necessitates precautions, such as
writing two copies of critical blocks. A good starting point for this topic
would be the works cited at the beginning of these notes.

Key papers on snapshot isolation and other relaxations of isolation in-
clude those by Berenson et al. [16]; by Kempster, Stirling, and Thanisch [87];
and by Adya, Liskov, and O’Neil [1]. Historically, the original treatment of
relaxed isolation was by Gray et al. [64].

I attributed the wedding analogy for two-phase commit to Gray. He
seems to have first introduced it in a conference paper [63] and then reused
it in his book with Reuter [66].

Transactions are also being increasingly used in multithreaded program-
ming as an alternative to the lock-based and lock-free synchronization ap-
proaches illustrated in the previous chapter. In this context, the trans-
actional objects are often as fine-grained as individual memory locations,
leading to the term Transactional Memory (TM ). This abstraction can ei-
ther be supported in hardware (Hardware Transactional Memory or HTM )
or in software (Software Transactional Memory or STM ). The best survey
of the whole field is the book by Harris, Larus, and Rajwar [70]. Although
the practicality of STM has been questioned [28, 54], it seems promising,
particularly when embedded in a functional programming language such as
Haskell [71] or Clojure.



Chapter 6

Virtual Memory

6.1 Introduction

In Chapters 4 and 5, you have seen that synchronization (including trans-
actions) can control the interactions between concurrent threads. For ex-
ample, synchronization can ensure that only one thread at a time updates
the memory locations holding a shared data structure. Now you will learn
about another form of control, which can provide each thread with its own
private storage, rather than regulating the threads’ access to shared storage.

In this chapter, I will present a mechanism, virtual memory, that can be
used to provide threads with private storage, thereby controlling their in-
teraction. However, virtual memory turns out to be a very general-purpose
abstraction, useful for many goals other than just giving threads some pri-
vacy. Therefore, after using this introductory section to present the basic
concept of virtual memory, I will devote Section 6.2 to surveying the ap-
plications of virtual memory. Only afterward will I turn to the details of
mechanisms and policies; you’ll find the related discussions in Sections 6.3
and 6.4. The chapter concludes with the standard features: security issues
in Section 6.5, then exercises, programming and exploration projects, and
notes.

The essence of virtual memory is to decouple the addresses that running
programs use to identify objects from the addresses that the memory uses
to identify storage locations. The former are known as virtual addresses
and the latter as physical addresses. As background for understanding this
distinction, consider first a highly simplified diagram of a computer system,
without virtual memory, as shown in Figure 6.1. In this system, the proces-
sor sends an address to the memory whenever it wants to store a value into

209
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Processor Memory

address

data

Figure 6.1: In a system without virtual memory, the processor sends ad-
dresses directly to the memory.

memory or load a value from memory. The data being loaded or stored is
also transferred in the appropriate direction. Each load operation retrieves
the most recent value stored with the specified address. Even though the
processor and memory are using a common set of addresses to communicate,
the role played by addresses is somewhat different from the perspective of
the processor than from the perspective of the memory, as I will now explain.

From the perspective of the processor (and the program the processor
is executing), addresses are a way of differentiating stored objects from one
another. If the processor stores more than one value, and then wishes to
retrieve one of those values, it needs to specify which one should be retrieved.
Hence, it uses addresses essentially as names. Just as an executive might tell
a clerk to “file this under ‘widget suppliers’ ” and then later ask the clerk
to “get me that document we filed under ‘widget suppliers’,” the processor
tells the memory to store a value with a particular address and then later
loads from that address. Addresses used by executing programs to refer to
objects are known as virtual addresses.

Of course, virtual addresses are not arbitrary names; each virtual address
is a number. The processor may make use of this to give a group of related
objects related names, so that it can easily compute the name of any object
in the group. The simplest example of this kind of grouping of related
objects is an array. All the array elements are stored at consecutive virtual
addresses. That allows the virtual address of any individual element to
be computed from the base virtual address of the array and the element’s
position within the array.

From the memory’s perspective, addresses are not identifying names
for objects, but rather are spatial locations of storage cells. The memory
uses addresses to determine which cells to steer the data into or out of.
Addresses used by the memory to specify storage locations are known as
physical addresses. Figure 6.2 shows the processor’s and memory’s views
of addresses in a system like that shown in Figure 6.1, where the physical
addresses come directly from the virtual addresses, and so are numerically
equal.
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Processor

0 �

1 �

2 �

Memory

0 1 2

Figure 6.2: In a system without virtual memory, virtual addresses (the pro-
cessor’s names for objects) equal physical addresses (the memory’s storage
locations).

The difference between the processor’s and memory’s perspectives be-
comes apparent when you consider that the processor may be dividing its
time between multiple programs. As I will explain briefly in Section 6.2.1
and in detail in Chapter 7, the operating system represents running pro-
grams as processes. Sometimes the processes will each need a private ob-
ject, yet the natural name to use will be the same in more than one process.
Figure 6.3 shows how this necessitates using different addresses in the pro-
cessor and the memory. That is, virtual addresses can no longer be equal
to physical addresses. To make this work, general-purpose computers are
structured as shown in Figure 6.4. Program execution within the processor
works entirely in terms of virtual addresses. However, when a load or store
operation is executed, the processor sends the virtual address to an inter-
mediary, the memory management unit (MMU ). The MMU translates the
virtual address into a corresponding physical address, which it sends to the
memory.

In Figure 6.3, each process uses the virtual address 0 as a name for its
own triangle. This is a simplified model of how more complicated objects

Processor Memory

0 1 2 3 4 50 �

1 �

2 �

0 �

1 �

2 �

Process A Process B

Figure 6.3: When two processes each use the same virtual addresses as
names for their own objects, the virtual addresses cannot equal the physical
addresses, because each process’s objects need to be stored separately.
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Processor Memory

MMU

data

virtual
address

physical
address

Figure 6.4: The memory management unit (MMU) translates the processor’s
virtual addresses into the memory’s physical addresses.

are referenced by real processes. Consider next a more realistic example of
why each process might use the same virtual addresses for its own objects.
Suppose several copies of the same spreadsheet program are running. Each
copy will naturally want to refer to “the spreadsheet,” but it should be
a different spreadsheet object in each process. Even if each process uses
a numerical name (that is, a virtual address), it would be natural for all
running instances of the spreadsheet program to use the same address; after
all, they are running the same code. Yet from the memory’s perspective, the
different processes’ objects need to be stored separately—hence, at different
physical addresses.

The same need for private names arises, if not quite so strongly, even
if the concurrent processes are running different programs. Although in
principle each application program could use different names (that is, virtual
addresses) from all other programs, this requires a rather unwieldy amount
of coordination.

Even for shared objects, addresses as names behave somewhat differently
from addresses as locations. Suppose two processes are communicating via a
shared bounded buffer; one is the producer, while the other is the consumer.
From the perspective of one process, the buffer is the “output channel,”
whereas for the other process, it is the “input channel.” Each process may
have its own name for the object; yet, the memory still needs to store the
object in one location. This holds true as well if the names used by the
processes are numerical virtual addresses.

Thus, once again, virtual addresses and physical addresses should not be
forced to be equal; it should be possible for two processes to use the same
virtual address to refer to different physical addresses or to use different
virtual addresses to refer to the same physical address.

You have seen that the MMU maps virtual addresses to physical ad-
dresses. However, I have not yet discussed the nature of this mapping. So
far as anything up to this point goes, the mapping could be as simple as
computing each physical address as twice the virtual address. However,
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that would not yield the very general mechanism known as virtual memory.
Instead, virtual memory must have the following additional properties:

• The function that maps virtual addresses to physical addresses is rep-
resented by a table, rather than by a computational rule (such as
doubling). That way, the mapping can be much more general.

• However, to keep its size manageable, the table does not independently
list a physical address for each virtual address. Instead, the virtual
addresses are grouped together into blocks known as pages, and the
table shows for each page of virtual addresses the corresponding page
frame of physical addresses. I’ll explain this in greater detail in Sec-
tion 6.3. In that same section, I also briefly consider an alternative,
segmentation.

• The contents of the table are controlled by the operating system. This
includes both incremental adjustments to the table (for purposes you
will see in Section 6.2) and wholesale changes of the table when switch-
ing between threads. The latter allows each thread to have its own
private virtual address space, in which case, the threads belong to
different processes, as explained in Section 6.2.1.

• The table need not contain a physical address translation for every
page of virtual addresses; in effect, some entries can be left blank.
These undefined virtual addresses are illegal for the processor to use.
If the processor generates an illegal address, the MMU interrupts the
processor, transferring control to the operating system. This interrupt
is known as a page fault. This mechanism serves not only to limit the
usable addresses but also to allow address translations to be inserted
into the table only when needed. By creating address translations
in this demand-driven fashion, many applications of virtual memory
arrange to move data only when necessary, thereby improving perfor-
mance.

• As a refinement of the notion of illegal addresses, some entries in the
table may be marked as legal for use, but only in specific ways. Most
commonly, it may be legal to read from some particular page of virtual
addresses but not to write into that page. The main purpose this serves
is to allow trouble-free sharing of memory between processes.

In summary, then, virtual memory consists of an operating system–
defined table of mappings from virtual addresses to physical addresses (at
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the granularity of pages), with the opportunity for intervention by the op-
erating system on accesses that the table shows to be illegal. You should be
able to see that this is a very flexible mechanism. The operating system can
switch between multiple views of the physical memory. Parts of physical
memory may be completely invisible in some views, because no virtual ad-
dresses map to those physical addresses. Other parts may be visible in more
than one view, but appearing at different virtual addresses. Moreover, the
mappings between virtual and physical addresses need not be established in
advance. By marking pages as illegal to access, and then making them avail-
able when an interrupt indicates that they are first accessed, the operating
system can provide mappings on a demand-driven basis. In Section 6.2, you
will see several uses to which this general mechanism can be put.

6.2 Uses for Virtual Memory

This section contains a catalog of uses for virtual memory, one per subsec-
tion. The applications of virtual memory enumerated are all in everyday use
in most general-purpose operating systems. A comprehensive list would be
much longer and would include some applications that have thus far been
limited to research systems or other esoteric settings.

6.2.1 Private Storage

The introductory section of this chapter has already explained that each
computation running on a computer may want to have its own private stor-
age, independent of the other computations that happen to be running on
the same computer. This goal of private storage can be further elaborated
into two subgoals:

• Each computation should be able to use whatever virtual addresses it
finds most convenient for its objects, without needing to avoid using
the same address as some other computation.

• Each computation’s objects should be protected from accidental (or
malicious) access by other computations.

Both subgoals—independent allocation and protection—can be achieved by
giving the computations their own virtual memory mappings. This forms
the core of the process concept.

A process is a group of one or more threads with an associated protection
context. I will introduce processes more fully in Chapter 7. In particular,
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you will learn that the phrase “protection context” is intentionally broad,
including such protection features as file access permissions, which you will
study in Chapters 7 and 8. For now, I will focus on one particularly impor-
tant part of a process’s context: the mapping of virtual addresses to physical
addresses. In other words, for the purposes of this chapter, a process is a
group of threads that share a virtual address space.

As I will describe in Chapter 7, the computer hardware and operating
system software collaborate to achieve protection by preventing any software
outside the operating system from updating the MMU’s address mapping.
Thus, each process is restricted to accessing only those physical memory
locations that the operating system has allocated as page frames for that
process’s pages. Assuming that the operating system allocates different
processes disjoint portions of physical memory, the processes will have no
ability to interfere with one another. The physical memory areas for the
processes need only be disjoint at each moment in time; the processes can
take turns using the same physical memory.

This protection model, in which processes are given separate virtual
address spaces, is the mainstream approach today; for the purposes of the
present chapter, I will take it for granted. In Chapter 7, I will also explore
alternatives that allow all processes to share a single address space and yet
remain protected from one another.

6.2.2 Controlled Sharing

Although the norm is for processes to use disjoint storage, sometimes the
operating system will map a limited portion of memory into more than one
process’s address space. This limited sharing may be a way for the processes
to communicate, or it may simply be a way to reduce memory consumption
and the time needed to initialize memory. Regardless of the motivation, the
shared physical memory can occupy a different range of virtual addresses
in each process. (If this flexibility is exercised, the shared memory should
not be used to store pointer-based structures, such as linked lists, because
pointers are represented as virtual addresses.)

The simplest example of memory-conserving sharing occurs when multi-
ple processes are running the same program. Normally, each process divides
its virtual address space into two regions:

• A read-only region holds the machine language instructions of the
program, as well as any read-only data the program contains, such
as the character strings printed for error messages. This region is
conventionally called the text of the program.
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• A read/write region holds the rest of the process’s data. (Many sys-
tems actually use two read/write regions, one for the stack and one
for other data.)

All processes running the same program can share the same text. The
operating system maps the text into each process’s virtual memory address
space, with the protection bits in the MMU set to enforce read-only access.
That way, the shared text does not accidentally become a communication
channel.

Modern programs make use of large libraries of supporting code. For
example, there is a great deal of code related to graphical user interfaces that
can be shared among quite different programs, such as a web browser and
a spreadsheet. Therefore, operating systems allow processes to share these
libraries with read-only protection, just as for main programs. Microsoft
refers to shared libraries as dynamic-link libraries (DLLs).

Figure 6.5 illustrates how processes can share in read-only form both
program text and the text of DLLs. In this figure, processes A and B are
running program 1, which uses DLLs 1 and 2. Processes C and D are
running program 2, which uses DLLs 1 and 3. Each process is shown as
encompassing the appropriate program text, DLLs, and writable data area.
In other words, each process encompasses those areas mapped into its virtual
address space.

From the operating system’s perspective, the simplest way to support
interprocess communication is to map some physical memory into two pro-
cesses’ virtual address spaces with full read/write permissions. Then the
processes can communicate freely; each writes into the shared memory and
reads what the other one writes. Figure 6.6 illustrates this sharing of a
writable area of memory for communication.

Simple as this may be for the operating system, it is anything but simple
for the application programmers. They need to include mutexes, readers-
writers locks, or some similar synchronization structure in the shared mem-
ory, and they need to take scrupulous care to use those locks. Otherwise,
the communicating processes will exhibit races, which are difficult to debug.

Therefore, some operating systems (such as Mac OS X) use virtual mem-
ory to support a more structured form of communication, known as message
passing, in which one process writes a message into a block of memory and
then asks the operating system to send the message to the other process.
The receiving process seems to get a copy of the sent message. For small
messages, the operating system may literally copy the message from one pro-
cess’s memory to the other’s. For efficiency, though, large messages are not
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Figure 6.5: The address space of a process includes the text of the program
the process is running, the text of any DLLs used by that program, and a
writable storage area for data.
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Figure 6.6: Two processes can communicate by sharing a writable storage
area.

actually copied. Instead, the operating system updates the receiver’s virtual
memory map to point at the same physical memory as the sender’s message;
thus, sender and receiver both have access to the message, without it being
copied. To maintain the ease of debugging that comes from message pass-
ing, the operating system marks the page as read-only for both the sender
and the receiver. Thus, they cannot engage in any nasty races. Because
the sender composes the message before invoking the operating system, the
read-only protection is not yet in place during message composition and so
does not stand in the way.

As a final refinement to message passing by read-only sharing, systems
such as Mac OS X offer copy on write (COW ). If either process tries to write
into the shared page, the MMU will use an interrupt to transfer control to
the operating system. The operating system can then make a copy of the
page, so that the sender and receiver now have their own individual copies,
which can be writable. The operating system resumes the process that
was trying to write, allowing it to now succeed. This provides the complete
illusion that the page was copied at the time the message was sent, as shown
in Figure 6.7. The advantage is that if the processes do not write into most
message pages, most of the copying is avoided.

6.2.3 Flexible Memory Allocation

The operating system needs to divide the computer’s memory among the
various processes, as well as retain some for its own use. At first glance,
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Figure 6.7: To use copy on write (COW) message passing, process A writes a
message into part of its private memory (Step 1) and then asks the operating
system to map the memory containing the message into process B’s address
space as well (Step 2). Neither process has permission to write into the
shared area. If either violates this restriction, the operating system copies
the affected page, gives each process write permission for its own copy, and
allows the write operation to proceed (Step 3). The net effect is the same
as if the message were copied when it was sent, but the copying is avoided
if neither process writes into the shared area.
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this memory allocation problem doesn’t seem too difficult. If one process
needs 8 megabytes (MB) and another needs 10, the operating system could
allocate the first 8 MB of the memory (with the lowest physical addresses)
to the first process and the next 10 MB to the second. However, this kind
of contiguous allocation runs into two difficulties.

The first problem with contiguous allocation is that the amount of mem-
ory that each process requires may grow and shrink as the program runs. If
the first process is immediately followed in memory by the second process,
what happens if the first process needs more space?

The second problem with contiguous allocation is that processes exit, and
new processes (with different sizes) are started. Suppose you have 512 MB
of memory available and three processes running, of sizes 128 MB, 256 MB,
and 128 MB. Now suppose the first and third processes terminate, freeing
up their 128-MB chunks of memory. Suppose a 256-MB process now starts
running. There is enough memory available, but not all in one contiguous
chunk, as illustrated in Figure 6.8. This situation is known as external frag-
mentation. I will discuss external fragmentation more carefully in Chapter 8,
because contiguous allocation is important for disk space. (I will also define
the contrasting term, internal fragmentation, in that same chapter.)

Because all modern general-purpose systems have virtual memory, these
contiguous allocation difficulties are a non-issue for main memory. The op-
erating system can allocate any available physical page frames to a process,
independent of where they are located in memory. For example, the co-
nundrum of Figure 6.8 could be solved as shown in Figure 6.9. In a more
realistic setting, it would be surprising for the pattern of physical memory
allocation to display even this degree of contiguity. However, the virtual
addresses can be contiguous even if the physical addresses are scattered all
over the memory.

6.2.4 Sparse Address Spaces

Just as virtual memory provides the operating system with flexibility in
allocating physical memory space, it provides each application program (or
process) with flexibility in allocating virtual address space. A process can
use whatever addresses make sense for its data structures, even if there are
large gaps between them. This provides flexibility for the compiler and
runtime environment, which assign addresses to the data structures.

Suppose, for example, that a process has three data structures (S1, S2,
and S3) that it needs to store. Each needs to be allocated in a contiguous
range of addresses, and each needs to be able to grow at its upper end. The
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Process A Process B Process C

128 MB 256 MB 128 MB

Process B

128 MB 256 MB 128 MB

Where does Process D go?

256 MB

Figure 6.8: Contiguous allocation leads to external fragmentation. In this
example, there is no contiguous 256-MB space available for process D, even
though the termination of processes A and C has freed up a total of 256 MB.

Process D
first half Process B Process D

second half

256 MB 128 MB128 MB

Figure 6.9: With virtual memory, the physical memory allocated to a process
need not be contiguous, so process D can be accommodated even without
sufficient memory in any one place.
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picture might look like this, with addresses in megabytes:

S1 free S2 free S3 free

0 2 6 8 12 14 18

In this example, only one third of the 18-MB address range is actually occu-
pied. If you wanted to allow each structure to grow more, you would have to
position them further apart and wind up with an even lower percentage of
occupancy. Many real processes span an address range of several gigabytes
without using anywhere near that much storage. (Typically, this is done
to allow one region to grow up from the bottom of the address space and
another to grow down from the top.)

In order to allow processes to use this kind of sparse address space with-
out wastefully occupying a corresponding amount of physical memory, the
operating system simply doesn’t provide physical address mappings for vir-
tual addresses in the gaps.

6.2.5 Persistence

Any general-purpose operating system must provide some way for users
to retain important data even if the system is shut down and restarted.
Most commonly, the data is kept in files, although other kinds of persistent
objects can be used. The persistent objects are normally stored on disk. For
example, as I write this book, I am storing it in files on disk. That way, I
don’t have to retype the whole book every time the computer is rebooted.
I will consider persistence in more detail in Chapter 8; for now, the only
question is how it relates to virtual memory.

When a process needs to access a file (or other persistent object), it
can ask the operating system to map the file into its address space. The
operating system doesn’t actually have to read the whole file into memory.
Instead, it can do the reading on a demand-driven basis. Whenever the
process accesses a particular page of the file for the first time, the MMU
signals a page fault. The operating system can respond by reading that page
of the file into memory, updating the mapping information, and resuming
the process. (For efficiency reasons, the operating system might choose to
fetch additional pages at the same time, on the assumption they are likely
to be needed soon. I discuss this possibility in Section 6.4.1.)

If the process writes into any page that is part of a mapped file, the
operating system must remember to write the page back to disk, in order
to achieve persistence. For efficiency, the operating system should not write
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back pages that have not been modified since they were last written back
or since they were read in. This implies the operating system needs to
know which pages have been modified and hence are not up to date on disk.
(These are called dirty pages.)

One way to keep track of dirty pages, using only techniques I have already
discussed, is by initially marking all pages read-only. That way, the MMU
will generate an interrupt on the first attempt to write into a clean page.
The operating system can then make the page writable, add it to a list
of dirty pages, and allow the operation to continue. When the operating
system makes the page clean again, by writing it to disk, it can again mark
the page read-only.

Because keeping track of dirty pages is such a common requirement and
would be rather inefficient using the approach just described, MMUs gen-
erally provide a more direct approach. In this approach, the MMU keeps a
dirty bit for each page. Any write into the page causes the hardware to set
the dirty bit without needing operating system intervention. The operating
system can later read the dirty bits and reset them. (The Intel Itanium
architecture contains a compromise: the operating system sets the dirty
bits, but with some hardware support. This provides the flexibility of the
software approach without incurring so large a performance cost.)

6.2.6 Demand-Driven Program Loading

One particularly important case in which a file gets mapped into memory is
running a program. Each executable program is ordinarily stored as a file
on disk. Conceptually, running a program consists of reading the program
into memory from disk and then jumping to the first instruction.

However, many programs are huge and contain parts that may not al-
ways be used. For example, error handling routines will get used only if
the corresponding errors occur. In addition, programs often support more
features and optional modes than any one user will ever need. Thus, reading
in the whole program is quite inefficient.

Even in the rare case that the whole program gets used, an interactive
user might prefer several short pauses for disk access to one long one. In
particular, reading in the whole program initially means that the program
will be slow to start, which is frustrating. By reading in the program incre-
mentally, the operating system can start it quickly at the expense of brief
pauses during operation. If each of those pauses is only a few tens of mil-
liseconds in duration and occurs at the time of a user interaction, each will
be below the threshold of human perception.
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In summary, operating system designers have two reasons to use virtual
memory techniques to read in each program on a demand-driven basis: in
order to avoid reading unused portions and in order to quickly start the
program’s execution. As with more general persistent storage, each page
fault causes the operating system to read in more of the program.

One result of demand-driven program loading is that application pro-
grammers can make their programs start up more quickly by grouping all
the necessary code together on a few pages. Of course, laying out the pro-
gram text is really not a job for the human application programmer, but
for the compiler and linker. Nonetheless, the programmer may be able to
provide some guidance to these tools.

6.2.7 Efficient Zero Filling

For security reasons, as well as for ease of debugging, the operating system
should never let a process read from any memory location that contains a
value left behind by some other process that previously used the memory.
Thus, any memory not occupied by a persistent object should be cleared
out by the operating system before a new process accesses it.

Even this seemingly mundane job—filling a region of memory with zeros—
benefits from virtual memory. The operating system can fill an arbitrarily
large amount of virtual address space with zeros using only a single zeroed-
out page frame of physical memory. All it needs to do is map all the virtual
pages to the same physical page frame and mark them as read-only.

In itself, this technique of sharing a page frame of zeros doesn’t address
the situation where a process writes into one of its zeroed pages. However,
that situation can be handled using a variant of the COW technique men-
tioned in Section 6.2.2. When the MMU interrupts the processor due to a
write into the read-only page of zeros, the operating system can update the
mapping for that one page to refer to a separate read/write page frame of
zeros and then resume the process.

If it followed the COW principle literally, the operating system would
copy the read-only page frame of zeros to produce the separate, writable page
frame of zeros. However, the operating system can run faster by directly
writing zeros into the new page frame without needing to copy them out
of the read-only page frame. In fact, there is no need to do the zero filling
only on demand. Instead, the operating system can keep some spare page
frames of zeros around, replenishing the stock during idle time. That way,
when a page fault occurs from writing into a read-only page of zeros, the
operating system can simply adjust the address map to refer to one of the
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spare prezeroed page frames and then make it writable.
When the operating system proactively fills spare page frames with zeros

during idle time, it should bypass the processor’s normal cache memory and
write directly into main memory. Otherwise, zero filling can seriously hurt
performance by displacing valuable data from the cache.

6.2.8 Substituting Disk Storage for RAM

In explaining the application of virtual memory to persistence, I showed
that the operating system can read accessed pages into memory from disk
and can write dirty pages back out to disk. The reason for doing so is
that disk storage has different properties from main semiconductor memory
(RAM). In the case of persistence, the relevant difference is that disk storage
is nonvolatile; that is, it retains its contents without power. However, disk
differs from RAM in other regards as well. In particular, it is a couple
orders of magnitude cheaper per gigabyte. This motivates another use of
virtual memory, where the goal is to simulate having lots of RAM using
less-expensive disk space. Of course, disk is also five orders of magnitude
slower than RAM, so this approach is not without its pitfalls.

Many processes have long periods when they are not actively running.
For example, on a desktop system, a user may have several applications
in different windows—a word processor, a web browser, a mail reader, a
spreadsheet—but focus attention on only one of them for minutes or hours
at a time, leaving the others idle. Similarly, within a process, there may be
parts that remain inactive. A spreadsheet user might look at the online help
once, and then not again during several days of spreadsheet use.

This phenomenon of inactivity provides an opportunity to capitalize on
inexpensive disk storage while still retaining most of the performance of
fast semiconductor memory. The computer system needs to have enough
RAM to hold the working set—the active portions of all active processes.
Otherwise, the performance will be intolerably slow, because of disk accesses
made on a routine basis. However, the computer need not have enough RAM
for the entire storage needs of all the processes: the inactive portions can be
shuffled off to disk, to be paged back in when and if they again become active.
This will incur some delays for disk access when the mix of activity changes,
such as when a user sets the word processor aside and uses a spreadsheet for
the first time in days. However, once the new working set of active pages is
back in RAM, the computer will again be as responsive as ever.

Much of the history of virtual memory focuses on this one application,
dating back to the invention of virtual memory in the early 1960s. (At that
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time, the two memories were magnetic cores and magnetic drum, rather than
semiconductor RAM and magnetic disk.) Even though this kind of paging
to disk has become only one of many roles played by virtual memory, I will
still pay it considerable attention. In particular, some of the most interesting
policy questions arise only for this application of virtual memory. When the
operating system needs to free up space in overcrowded RAM, it needs
to guess which pages are unlikely to be accessed soon. I will come back
to this topic (so-called replacement policies) after first considering other
questions of mechanism and policy that apply across the full spectrum of
virtual memory applications.

6.3 Mechanisms for Virtual Memory

Address mapping needs to be flexible, yet efficient. As I mentioned in Sec-
tion 6.1, this means that the mapping function is stored in an explicit table,
but at the granularity of pages rather than individual bytes or words. Many
systems today use fixed-size pages, perhaps with a few exceptions for the
operating system itself or hardware access, though research suggests that
more general mixing of page sizes can be beneficial. (As explained in the
notes, Linux has moved in this direction.)

Typical page sizes have grown over the decades, for reasons you can ex-
plore in Exercises 6.3 and 6.4; today, the most common is 4 kibibytes (KiB).1

Each page of virtual memory and each page frame of physical memory is
this size, and each starts at an address that is a multiple of the page size.
For example, with 4-KiB pages, the first page (or page frame) has address
0, the next has address 4096, then 8192, and so forth.

Each page of virtual memory address space maps to an underlying page
frame of physical memory or to none. For example, Figure 6.10 shows
one possible mapping, on a system with unrealistically few pages and page
frames. The numbers next to the boxes are page numbers and page frame
numbers. The starting addresses are these numbers multiplied by the page
size. At the top of this figure, you can see that page 0 is stored in page
frame 1. If the page size is 4 KiB, this means that virtual address 0 trans-
lates to physical address 4096, virtual address 100 translates to physical
address 4196, and so forth. The virtual address of the last 4-byte word in

1Sizes related to main memory are usually based on powers of 2, not powers of 10 used
elsewhere (for example, sizes of secondary storage devices). To avoid confusion, units
based on powers of 2 have been standardized with their own prefixes such as “kibi” and
“mebi” instead of “kilo” and “mega”; see the Wikipedia article on Kibibytes for more
details.

https://en.wikipedia.org/wiki/Kibibyte


6.3. MECHANISMS FOR VIRTUAL MEMORY 227

0

1

Pages

2

3

4

5

6

7

X

X

X

X

X

0

1

Page frames

2

3

Figure 6.10: In this example mapping of eight pages to four page frames,
page 0 has been allocated page frame 1, page 1 has been allocated page
frame 0, and page 6 has been allocated page frame 3. The Xs indicate that
no page frame is assigned to hold pages 2–5 or page 7. Page frame 2 is
unused.

page 0, 4092, translates to the physical address of the last word in page
frame 1, 8188. Up until this point, all physical addresses were found by
adding 4096 to the virtual address. However, the very next virtual address,
4096, translates to physical address 0, because it starts a new page, which
is mapped differently. Note also that page frame 2 is currently not holding
any page, and that pages 2–5 and page 7 have no translation available. In
Exercise 6.5, you can gain experience working with this translation of virtual
addresses into physical addresses by translating the addresses for page 6.

Of course, a realistic computer system will have many more page frames
of physical memory and pages of virtual address space. Often there are tens
or hundreds of thousands of page frames and at least hundreds of thousands
of pages. As a result, operating system designers need to think carefully
about the data structure used to store the table that maps virtual page
numbers to physical page frame numbers. Sections 6.3.2 through 6.3.4 will
be devoted to presenting three alternative structures that are in current use
for page tables: linear, multilevel, and hashed. (Other alternatives that have
fallen out of favor, or have not yet been deployed, are briefly mentioned in
the end-of-chapter notes.)

Whatever data structure the operating system uses for its page table,
it will need to communicate the mapping information to the hardware’s
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MMU, which actually performs the mapping. The nature of this soft-
ware/hardware interface constrains the page table design and also provides
important context for comparing the performance of alternative page table
structures. Therefore, in Section 6.3.1, I will explain the two forms the
software/hardware interface can take.

Finally, Section 6.3.5 provides a brief look at segmentation, which was
historically important both as an alternative to paging and as an adjunct to
it.

6.3.1 Software/Hardware Interface

You have seen that the operating system stores some form of page table data
structure in memory, showing which physical memory page frame (if any)
holds each virtual memory page. Although I will present several possible
page table structures shortly, the most important design issue applies equally
to all of them: the page table should almost never be used.

Performance considerations explain why such an important data struc-
ture should be nearly useless (in the literal sense). Every single memory
access performed by the processor generates a virtual address that needs
translation to a physical address. Naively, this would mean that every sin-
gle memory access from the processor requires a lookup operation in the
page table. Performing that lookup operation would require at least one
more memory access, even if the page table were represented very efficiently.
Thus, the number of memory accesses would at least double: for each real
access, there would be one page table access. Because memory performance
is often the bottleneck in modern computer systems, this means that virtual
memory might well make programs run half as fast—unless the page table
lookup can be mostly avoided. Luckily, it can.

The virtual addresses accessed by realistic software are not random; in-
stead, they exhibit both temporal locality and spatial locality. That is, ad-
dresses that are accessed once are likely to be accessed again before long,
and nearby addresses are also likely to be accessed soon. Because a nearby
address is likely to be on the same page, both kinds of locality wind up
creating temporal locality when considered at the level of whole pages. If a
page is accessed, chances are good that the same page will be accessed again
soon, whether for the same address or another.

The MMU takes advantage of this locality by keeping a quickly accessible
copy of a modest number of recently used virtual-to-physical translations.
That is, it stores a limited number of pairs, each with one page number and
the corresponding page frame number. This collection of pairs is called the
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translation lookaside buffer (TLB). Most memory accesses will refer to page
numbers present in the TLB, and so the MMU will be able to produce the
corresponding page frame number without needing to access the page table.
This happy circumstance is known as a TLB hit ; the less fortunate case,
where the TLB does not contain the needed translation, is a TLB miss.

The TLB is one of the most performance-critical components of a mod-
ern microprocessor. In order for the system to have a fast clock cycle time
and perform well on small benchmarks, the TLB must be very quickly acces-
sible. In order for the system’s performance not to fall off sharply on larger
workloads, the TLB must be reasonably large (perhaps hundreds of entries),
so that it can still prevent most page table accesses. Unfortunately, these
two goals are in conflict with one another: chip designers know how to make
lookup tables large or fast, but not both. Coping as well as possible with
this dilemma requires cooperation from the designers of hardware, operating
system, and application software:

• The hardware designers ameliorate the problem by including two TLBs,
one for instruction fetches and one for data loads and stores. That way,
these two categories of memory access don’t need to compete for the
same TLB.

• The hardware designers may further ameliorate the problem by in-
cluding a hierarchy of TLBs, analogous to the cache hierarchy. A
small, fast level-one (L1) TLB makes most accesses fast, while a larger,
slower level-two (L2) TLB ensures that the page table won’t need
to be accessed every time the L1 TLB misses. As an example, the
AMD Opteron microprocessor contains 40-entry L1 instruction and
data TLBs, and it also contains 512-entry L2 instruction and data
TLBs.

• The hardware designers also give the operating system designers some
tools for reducing the demand for TLB entries. For example, if dif-
ferent TLB entries can provide mappings for pages of varying sizes,
the operating system will be able to map large, contiguously allocated
structures with fewer TLB entries, while still retaining flexible alloca-
tion for the rest of virtual memory.

• The operating system designers need to use tools such as variable page
size to reduce TLB entry consumption. At a minimum, even if all
application processes use small pages (4 KiB), the operating system
itself can use larger pages. Similarly, a video frame buffer of many
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consecutive megabytes needn’t be carved up into 4-KiB chunks. As
a secondary benefit, using larger pages can reduce the size of page
tables. In many cases, smaller page tables are also quicker to access.

• More fundamentally, all operating system design decisions need to be
made with an eye to how they will affect TLB pressure, because this
is such a critical performance factor. One obvious example is the
normal page size. Another, less obvious, example is the size of the
scheduler’s time slices: switching processes frequently will increase
TLB pressure and thereby hurt performance, even if the TLB doesn’t
need to be flushed at every process switch. (I will take up that latter
issue shortly.)

• The application programmers also have a role to play. Programs that
exhibit strong locality of reference will perform much better, not only
because of the cache hierarchy, but also because of the TLB. The per-
formance drop-off when your program exceeds the TLB’s capacity is
generally quite precipitous. Some data structures are inherently more
TLB-friendly than others. For example, a large, sparsely occupied ta-
ble may perform much worse than a smaller, more densely occupied
table. In this regard, theoretical analyses of algorithms may be mis-
leading, if they assume all memory operations take a constant amount
of time.

At this point, you have seen that each computer system uses two different
representations of virtual memory mappings: a page table and a TLB. The
page table is a comprehensive but slow representation, whereas the TLB
is a selective but fast representation. You still need to learn how entries
from the page table get loaded into the TLB. This leads to the topic of the
software/hardware interface.

In general, the MMU loads page table entries into the TLB on a demand-
driven basis. That is, when a memory access results in a TLB miss, the
MMU loads the relevant translation into the TLB from the page table, so
that future accesses to the same page can be TLB hits. The key difference
between computer architectures is whether the MMU does this TLB loading
autonomously, or whether it does it with lots of help from operating system
software running on the processor.

In many architectures, the MMU contains hardware, known as a page
table walker, that can do the page table lookup operation without software
intervention. In this case, the operating system must maintain the page
table in a fixed format that the hardware understands. For example, on an
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IA-32 processor (such as the Pentium 4), the operating system has no other
realistic option than to use a multilevel page table, because the hardware
page table walker expects this format. The software/hardware interface
consists largely of a single register that contains the starting address of
the page table. The operating system just loads this register and lets the
hardware deal with loading individual TLB entries. Of course, there are
some additional complications. For example, if the operating system stores
updated mapping information into the page table, it needs to flush obsolete
entries from the TLB.

In other processors, the hardware has no specialized access to the page
table. When the TLB misses, the hardware transfers control to the operating
system using an interrupt. The operating system software looks up the
missing address translation in the page table, loads the translation into the
TLB using a special instruction, and resumes normal execution. Because
the operating system does the page table lookup, it can use whatever data
structure its designer wishes. The lookup operation is done not with a special
hardware walker, but with normal instructions to load from memory. Thus,
the omission of a page table walker renders the processor more flexible,
as well as simpler. However, TLB misses become more expensive, as they
entail a context switch to the operating system with attendant loss of cache
locality. The MIPS processor, used in the Sony PlayStation 2, is an example
of a processor that handles TLB misses in software.

Architectures also differ in how they handle process switches. Recall that
each process may have its own private virtual memory address space. When
the operating system switches from one process to another, the translation
of virtual addresses to physical addresses needs to change as well. In some
architectures, this necessitates flushing all entries from the TLB. (There
may be an exception for global entries that are not flushed, because they
are shared by all processes.) Other architectures tag the TLB entries with a
process identifying number, known as an address space identifier (ASID). A
special register keeps track of the current process’s ASID. For the operating
system to switch processes, it simply stores a new ASID into this one register;
the TLB need not be flushed. The TLB will hit only if the ASID and page
number both match, effectively ignoring entries belonging to other processes.

For those architectures with hardware page table walkers, each process
switch may also require changing the register pointing to the page table.
Typically, linear page tables and multilevel page tables are per process. If
an operating system uses a hashed page table, on the other hand, it may
share one table among all processes, using ASID tags just like in the TLB.

Having seen how the MMU holds page translations in its TLB, and how
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those TLB entries are loaded from a page table either by a hardware walker
or operating system software, it is time now to turn to the structure of page
tables themselves.

6.3.2 Linear Page Tables

Linear page tables are conceptually the simplest form of page table, though
as you will see, they turn out to be not quite so simple in practice as they
are in concept. A linear page table is an array with one entry per page in
the virtual address space. The first entry in the table describes page 0, the
next describes page 1, and so forth. To find the information about page n,
one uses the same approach as for any array access: multiply n by the size
of a page table entry and add that to the base address of the page table.

Recall that each page either has a corresponding page frame or has none.
Therefore, each page table entry contains, at a minimum, a valid bit and
a page frame number. If the valid bit is 0, the page has no corresponding
frame, and the page frame number is unused. If the valid bit is 1, the
page is mapped to the specified page frame. Real page tables often contain
other bits indicating permissions (for example, whether writing is allowed),
dirtiness, and so forth.

Figure 6.10 on page 227 showed an example virtual memory configuration
in which page 0 was held in page frame 1, page 1 in page frame 0, and page 6
in page frame 3. Figure 6.11 shows how this information would be expressed
in a linear page table. Notice that the page numbers are not stored in the
linear page table; they are implicit in the position of the entries. The first
entry is implicitly for page 0, the next for page 1, and so forth, on down to
page 7. If each page table entry is stored in 4 bytes, this tiny page table
would occupy 32 consecutive bytes of memory. The information that page 3
has no valid mapping would be found 12 bytes after the base address of the
table.

The fundamental problem with linear page tables is that real ones are
much larger than this example. For a 32-bit address space with 4-KiB pages,
there are 220 pages, because 12 of the 32 bits are used to specify a location
within a page of 4 KiB or 212 bytes. Thus, if you again assume 4 bytes per
page table entry, you now have a 4-MiB page table. Storing one of those per
process could use up an undesirably large fraction of a computer’s memory.
(My computer is currently running 70 processes, for a hypothetical total
of 280 MiB of page tables, which would be 36 percent of my total RAM.)
Worse yet, modern processors are moving to 64-bit address spaces. Even if
you assume larger pages, it is hard to see how a linear page table spanning
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0 X
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Figure 6.11: In a linear page table, the information about page n is stored
at position number n, counting from 0. In this example, the first row,
position 0, shows that page 0 is stored in page frame 1. The second-to-last
row, position 6, shows that page 6 is stored in page frame 3. The rows
with valid bit 0 indicate that no page frame holds the corresponding pages,
number 2–5 and 7. In these page table entries, the page frame number is
irrelevant and can be any number; an X is shown to indicate this.

a 64-bit address space could be stored. In Exercise 6.8, you can calculate
just how huge such a page table would be.

This problem of large page tables is not insurmountable. Linear page
tables have been used by 32-bit systems (for example, the VAX architec-
ture, which was once quite commercially important), and even 64-bit linear
page tables have been designed—Intel supports them as one option for its
current Itanium architecture. Because storing such a huge page table is
inconceivable, the secret is to find a way to avoid storing most of the table.

Recall that virtual memory address spaces are generally quite sparse:
only a small fraction of the possible page numbers actually have translations
to page frames. (This is particularly true on 64-bit systems; the address
space is billions of times larger than for 32-bit systems, whereas the number
of pages actually used may be quite comparable.) This provides the key to
not storing the whole linear page table: you need only store the parts that
actually contain valid entries.

On the surface, this suggestion seems to create as big a problem as it
solves. Yes, you might now have enough memory to store the valid entries,
but how would you ever find the entry for a particular page number? Recall
that the whole point of a linear page table is to directly find the entry for
page n at the address that is n entries from the beginning of the table. If
you leave out the invalid entries, will this work any more? Not if you squish
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the addresses of the remaining valid entries together. So, you had better
not do that.

You need to avoid wasting memory on invalid entries, and yet still be able
to use a simple array-indexing address calculation to find the valid entries.
In other words, the valid entries need to stay at the same addresses, whether
there are invalid entries before them or not. Said a third way, although you
want to be thrifty with storage of the page table, you cannot be thrifty with
addresses. This combination is just barely possible, because storage and
addressing need not be the same.

Divorcing the storage of the page table from the allocation of addresses
for its entries requires three insights:

• The pattern of address space usage, although sparse, is not completely
random. Often, software will use quite a few pages in a row, leave a
large gap, and then use many more consecutive pages. This clumping
of valid and invalid pages means that you can decide which portions of
the linear page table are worth storing at a relatively coarse granularity
and not at the granularity of individual page table entries. You can
store those chunks of the page table that contain any valid entries,
even if there are also a few invalid entries mixed in, and not store
those chunks that contain entirely invalid entries.

• In fact, you can choose your chunks of page table to be the same size as
the pages themselves. For example, in a system with 4-KiB pages and
4-byte page table entries, each chunk of page table would contain 1024
page table entries. Many of these chunks won’t actually need storage,
because there are frequently 1024 unused pages in a row. Therefore,
you can view the page table as a bunch of consecutive pages, some of
which need storing and some of which don’t.

• Now for the trick: use virtual memory to store the page table. That
way, you decouple the addresses of page table entries from where they
are stored—if anywhere. The virtual addresses of the page table entries
will form a nice orderly array, with the entry for page n being n entries
from the beginning. The physical addresses are another story. Recall
that the page table is divided into page-sized chunks, not all of which
you want to store. For those you want to store, you allocate page
frames, wherever in memory is convenient. For those you don’t want
to store, you don’t allocate page frames at all.

If this use of virtual memory to store the virtual memory’s page table
seems dizzying, it should. Suppose you start with a virtual address that has
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been generated by a running application program. You need to translate
it into a physical address. To do so, you want to look up the virtual page
number in the page table. You multiply the application-generated virtual
page number by the page table entry size, add the base address, and get
another virtual address: the virtual address of the page table entry. So,
now what? You have to translate the page table entry’s virtual address to
a physical address. If you were to do this the same way, you would seem
to be headed down the path to infinite recursion. Systems that use linear
page tables must have a way out of this recursion. In Figure 6.12, the box
labeled “?” must not be another copy of the whole diagram. That is where
the simple concept becomes a not-so-simple reality.

Most solutions to the recursion problem take the form of using two dif-
ferent representations to store the virtual-to-physical mapping information.
One (the linear page table) is used for application-generated virtual ad-
dresses. The other is used for the translation of page table entries’ virtual
addresses. For example, a multilevel page table accessed using a physi-
cal address can be used to provide the mapping information for the pages
holding the main linear page table; I will describe multilevel page tables in
Section 6.3.3.

This may leave you wondering what the point of the linear page table
is. If another representation is going to be needed anyway, why not use
it directly as the main page table, for mapping all pages, rather than only
indirectly, for mapping the page table’s pages? To answer this, you need
to recall that the MMU has a TLB in which it keeps track of recently used
virtual-to-physical translations; repeated access to the same virtual page
number doesn’t require access to the page table. Only when a new page
number is accessed is the page table (of whatever kind) accessed. This is
true not only when translating the application’s virtual address, but also
when translating the virtual address of a page table entry.

Depending on the virtual address generated by the application software,
there are three possibilities:

1. For an address within the same page as another recent access, no page
table lookup is needed at all, because the MMU already knows the
translation.

2. For an address on a new page, but within the same chunk of pages
as some previous access, only a linear page table lookup is needed,
because the MMU already knows the translation for the appropriate
page of the linear page table.
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Figure 6.12: This diagram shows how a virtual address, generated by an
application process, is translated into a physical address using a linear page
table. At one point in the translation procedure, indicated by a “?” in this
diagram, the virtual address of the page table entry needs to be translated
into a physical address. This must be done using a method that is different
from the one used for the application’s virtual address, in order to avoid an
infinite recursion. To see this, imagine inserting another copy of the whole
diagram in place of the “?” box. A second “?” would result, which would
require further substitution, and so forth to infinity.
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3. For an address on a new page, far from others that have been accessed,
both kinds of page table lookup are needed, because the MMU has no
relevant translations cached in its TLB.

Because virtual memory accesses generally exhibit temporal and spatial lo-
cality, most accesses fall into the first category. However, for those accesses,
the page table organization is irrelevant. Therefore, to compare linear page
tables with alternative organizations, you should focus on the remaining ac-
cesses. Of those accesses, spatial locality will make most fall into the second
category rather than the third. Thus, even if there is a multilevel page table
behind the scenes, it will be used only rarely. This is important, because the
multilevel page table may be quite a bit slower than the linear one. Using
the combination improves performance at the expense of complexity.

6.3.3 Multilevel Page Tables

Recall that the practicality of linear page tables relies on two observations:

• Because valid page table entries tend to be clustered, if the page table
is divided into page-sized chunks, there will be many chunks that don’t
need storage.

• The remaining chunks can be located as though they were in one big
array by using virtual memory address translation to access the page
table itself.

These two observations are quite different from one another. The first is
an empirical fact about most present-day software. The second is a design
decision. You could accept the first observation while still making a different
choice for how the stored chunks are located. This is exactly what happens
with multilevel page tables (also known as hierarchical page tables or forward-
mapped page tables). They too divide the page table into page-sized chunks,
in the hopes that most chunks won’t need storage. However, they locate the
stored chunks without recursive use of virtual memory by using a tree data
structure, rather than a single array.

For simplicity, start by considering the two-level case. This suffices for
32-bit architectures and is actually used in the extremely popular IA-32
architecture, the architecture of Intel’s Pentium and AMD’s Athlon family
microprocessors. The IA-32 architecture uses 4-KiB pages and has page
table entries that occupy 4 bytes. Thus, 1024 page-table entries fit within
one page-sized chunk of the page table. As such, a single chunk can span
4 MiB of virtual address space. Given that the architecture uses 32-bit
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virtual addresses, the full virtual address space is 4 gibibytes (GiB) (that
is, 232 bytes); it can be spanned by 1024 chunks of the page table. All
you need to do is locate the storage of each of those 1024 chunks or, in
some cases, determine that the chunk didn’t merit storage. You can do that
using a second-level structure, much like each of the chunks of the page
table. It, too, is 4 KiB in size and contains 1024 entries, each of which is
4 bytes. However, these entries in the second-level page directory point to
the 1024 first-level chunks of the page table, rather than to individual page
frames. See Figure 6.13 for an illustration of the IA-32 page table’s two-level
hierarchy, with branching factor 1024 at each level. In this example, page 1
is invalid, as are pages 1024–2047. You can explore this example further in
Exercise 6.9 and can consider a modified version of this page table format
in Exercise 6.10.

The operating system on an IA-32 machine stores the physical base ad-
dress of the page directory in a special register, where the hardware’s page
table walker can find it. Suppose that at some later point, the processor
generates a 32-bit virtual address and presents it to the MMU for trans-
lation. Figure 6.14 shows the core of the translation process, omitting the
TLB and the validity checks. In more detail, the MMU follows the following
translation process:

1. Initially divide the 32-bit virtual address into its left-hand 20 bits (the
page number) and right-hand 12 bits (the offset within the page).

2. Look up the 20-bit page number in the TLB. If a TLB hit occurs,
concatenate the resulting page frame number with the 12-bit offset to
form the physical address. The process is over.

3. On the other hand, if a TLB miss occurred, subdivide the 20-bit page
number into its left-hand 10 bits (the page directory index) and its
right-hand 10 bits (the page table index).

4. Load the page directory entry from memory; its address is four times
the page directory index plus the page directory base address, which
is taken from the special register.

5. Check the page directory entry’s valid bit. If it is 0, then there is no
page frame holding the page in question—or any of its 1023 neighbors,
for that matter. Interrupt the processor with a page fault.

6. Conversely, if the valid bit is 1, the page directory entry also contains
a physical base address for a chunk of page table.
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Figure 6.13: The IA-32 two-level page table has a page directory that can
point to 1024 chunks of the page table, each of which can point to 1024 page
frames. As in Fig. 6.11, entries (of page directory and page table) record
valid bits and address information. For example, the leftmost entry of the
leftmost chunk of the page table points to the page frame holding page 0,
which is page frame 0; besides, page frame 42 holds page 1023, while page
frames 100 and 99 hold pages 1047552 and 1047553, respectively. Each entry
can also be marked invalid, indicated by a valid bit of 0 and an X in this
diagram. For example, the second entry in the first chunk of the page table
is invalid, showing that no page frame holds page 1. The same principle
applies at the page directory level; in this example, no page frames hold
pages 1024–2047, so the second page directory entry is marked invalid.
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Figure 6.14: This diagram shows only the core of IA-32 paged address map-
ping, omitting the TLB and validity checks. The virtual address is divided
into a 20-bit page number and 12-bit offset within the page; the latter 12 bits
are left unchanged by the translation process. The page number is subdi-
vided into a 10-bit page directory index and a 10-bit page table index. Each
index is multiplied by 4, the number of bytes in each entry, and then added
to the base physical address of the corresponding data structure, producing
a physical memory address from which the entry is loaded. The base address
of the page directory comes from a register, whereas the base address of the
page table comes from the page directory entry.
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7. Load the page table entry from memory; its address is four times the
page table index plus the page table base address, which comes from
the previous step.

8. Check the page table entry’s valid bit. If it is 0, then there is no page
frame holding the page in question. Interrupt the processor with a
page fault.

9. On the other hand, if the valid bit is 1, the page table entry also
contains the physical page frame number. Load the TLB and complete
the memory access.

This description, although somewhat simplified, shows the key feature of
the IA-32 design: it has a compact page directory, with each entry covering
a span of 4 MiB. For the 4-MiB regions that are entirely invalid, nothing
further is stored. For the regions containing valid pages, the page directory
entry points to another compact structure containing the individual page
table entries.

The actual IA-32 design derives some additional advantages from having
the page directory entries with their 4-MiB spans:

• Each page directory entry can optionally point directly to a single
large 4-MiB page frame, rather than pointing to a chunk of page table
entries leading indirectly to 4-KiB page frames, as I described. This
option is controlled by a page-size bit in the page directory entry. By
using this feature, the operating system can more efficiently provide
the mapping information for large, contiguously allocated structures.

• Each page directory entry contains permission bits, just like the page
table entries do. Using this feature, the operating system can mark an
entire 4-MiB region of virtual address space as being read-only more
quickly, because it doesn’t need to set the read-only bits for each 4-
KiB page in the region. The translation process outlined earlier is
extended to check the permission bits at each level and signal a page
fault interrupt if there is a permission violation at either level.

The same principle used for two-level page tables can be expanded to
any greater number of levels. If you have taken a course on data structures,
you may have seen this structure called a trie (or perhaps a digital tree or
radix tree). The virtual page number is divided into groups of consecutive
bits. Each group of bits forms an index for use at one level of the tree,
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starting with the leftmost group at the top level. The indexing at each level
allows the chunk at the next level down to be located.

For example, the AMD64 architecture (used in the Opteron and Athlon 64
processors and later imitated by Intel under the name IA-32e) employs four-
level page tables of this kind. Although the AMD64 is nominally a 64-bit
architecture, the virtual addresses are actually limited to only 48 bits in
the current version of the architecture. Because the basic page size is still
4 KiB, the rightmost 12 bits are still the offset within a page. Thus, 36 bits
remain for the virtual page number. Each page table entry (or similar entry
at the higher levels) is increased in size to 8 bytes, because the physical
addresses are larger than in IA-32. Thus, a 4-KiB chunk of page table can
reference only 512 pages spanning 2 MiB. Similarly, the branching factor at
each higher level of the tree is 512. Because 9 bits are needed to select from
512 entries, it follows that the 36-bit virtual page number is divided into
four groups of 9 bits each, one for each level of the tree.

Achieving adequate performance with a four-level page table is challeng-
ing. The AMD designers will find this challenge intensified if they extend
their architecture to full 64-bit virtual addresses, which would require two
more levels be added to the page table. Other designers of 64-bit processors
have made different choices: Intel’s Itanium uses either linear page tables or
hashed page tables, and the PowerPC uses hashed page tables.

6.3.4 Hashed Page Tables

You have seen that linear page tables and multilevel page tables have a
strong family resemblance. Both designs rely on the assumption that valid
and invalid pages occur in large clumps. As a result, each allows you to
finesse the dilemma of wanting to store page table entries for successive
pages consecutively in memory, yet not wanting to waste storage on invalid
entries. You store page table entries consecutively within each chunk of the
table and omit storage for entire chunks of the table.

Suppose you take a radical approach and reject the starting assumption.
You will still assume that the address space is sparsely occupied; that is,
many page table entries are invalid and should not be stored. (After all, no
one buys 264 bytes of RAM for their 64-bit processor.) However, you will
no longer make any assumption about clustering of the valid and invalid
pages—they might be scattered randomly throughout the whole address
space. This allows greater flexibility for the designers of runtime environ-
ments. As a consequence, you will have to store individual valid page table
entries, independent of their neighbors.
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Storing only individual valid page table entries without storing any of the
invalid entries takes away the primary tool used by the previous approaches
for locating entries. You can no longer find page n’s entry by indexing n
elements into an array—not even within each chunk of the address space.
Therefore, you need to use an entirely different approach to locating page
table entries. You can store them in a hash table, known as a hashed page
table.

A hashed page table is an array of hash buckets, each of which is a
fixed-sized structure that can hold some small number of page table entries.
(In the Itanium architecture, each bucket holds one entry, whereas in the
PowerPC, each bucket holds eight entries.) Unlike the linear page table,
this array of buckets does not have a private location for each virtual page
number; as such, it can be much smaller, particularly on 64-bit architectures.

Because of this reduced array size, the page number cannot be directly
used as an index into the array. Instead, the page number is first fed through
a many-to-one function, the hash function. That is, each page gets assigned
a specific hash bucket by the hash function, but many different pages get
assigned the same bucket. The simplest plausible hash function would be
to take the page number modulo the number of buckets in the array. For
example, if there are 1000000 hash buckets, then the page table entries for
pages 0, 1000000, 2000000, and so forth would all be assigned to bucket 0,
while pages 1, 1000001, 2000001, and so forth would all be assigned to
bucket 1.

The performance of the table relies on the assumption that only a few
of the pages assigned to a bucket will be valid and hence have page table
entries stored. That is, the assumption is that only rarely will multiple valid
entries be assigned to the same bucket, a situation known as a hash collision.
To keep collisions rare, the page table size needs to scale with the number
of valid page table entries. Luckily, systems with lots of valid page table
entries normally have lots of physical memory and therefore have room for
a bigger page table.

Even if collisions are rare, there must be some mechanism for handling
them. One immediate consequence is that each page table entry will now
need to include an indication of which virtual page number it describes. In
the linear and multilevel page tables, the page number was implicit in the
location of the page table entry. Now, any one of many different page table
entries could be assigned to the same location, so each entry needs to include
an identifying tag, much like in the TLB.

For an unrealistically small example of using a hashed page table, we
can return to Figure 6.10 on page 227. Suppose you have a hashed page



244 CHAPTER 6. VIRTUAL MEMORY

table with four buckets, each capable of holding one entry. Each of the four
entries will contain both a virtual page number and a corresponding physical
page frame number. If the hash function consists of taking the page number
modulo 4, the table would contain approximately the information shown in
Figure 6.15.

The possibility of collisions has another consequence, beyond necessi-
tating page number tags. Even if collisions occur, each valid page table
entry needs to be stored somewhere. Because the colliding entries cannot be
stored in the same location, some alternative location needs to be available.
One possibility is to have alternative locations within each hash bucket; this
is why the PowerPC has room for eight page table entries in each bucket.
Provided no collision involves more than this number of entries, they can
all be stored in the same bucket. The PowerPC searches all entries in the
bucket, looking for one with a matching tag.

If a collision involving more than eight entries occurs on a PowerPC, or
any collision at all occurs on an Itanium processor, the collision cannot be
resolved within the hash bucket. To handle such collisions, the operating
system can allocate some extra memory and chain it onto the bucket in
a linked list. This will be an expensive but rare occurrence. As a result,
hardware page table walkers do not normally handle this case. If the walker
does not find a matching tag within the bucket, it uses an interrupt to
transfer control to the operating system, which is in charge of searching
through the linked list.

You have now seen two reasons why the page table entries in hashed
page tables need to be larger than those in linear or multilevel page tables.
The hashed page table entries need to contain virtual page number tags, and

Valid Page Page Frame

1 0 1

1 1 0

1 6 3

0 X X

Figure 6.15: Each entry in a hashed page table is in a location determined
by feeding the page number through a hash function. In this example, the
hash function consists of taking the page number modulo the number of
entries in the table, 4. Consider the entry recording that page 6 is held by
page frame 3. This entry is in position 2 within the table (counting from 0)
because the remainder when 6 is divided by 4 is 2.



6.3. MECHANISMS FOR VIRTUAL MEMORY 245

each bucket needs a pointer to an overflow chain. As a result of these two
factors and the addition of some extra features, the Itanium architecture
uses 32-byte entries for hashed page tables versus 8-byte entries for linear
page tables.

Incidentally, the fact that the Itanium architecture supports two different
page table formats suggests just how hard it is to select one. Research
continues into the relative merits of the different formats under varying
system workloads. As a result of this research, future systems may use other
page table formats beyond those described here, though they are likely to be
variants on one of these themes. Architectures such as MIPS that have no
hardware page table walker are excellent vehicles for such research, because
they allow the operating system to use any page table format whatsoever.

Some operating systems treat a hashed page table as a software TLB,
a table similar to the hardware’s TLB in that it holds only selected page
table entries. In this case, no provision needs to be made for overfull hash
buckets; the entries that don’t fit can simply be omitted. A slower multilevel
page table provides a comprehensive fallback for misses in the software TLB.
This alternative is particularly attractive when porting an operating system
(such as Linux) that was originally developed on a machine with multilevel
page tables.

6.3.5 Segmentation

Thus far, I have acted as though virtual memory were synonymous with
paging. Today, that is true. However, when virtual memory was first de-
veloped in the 1960s, there were two competing approaches: paging and
segmentation. Some systems (notably Multics) also included a hybrid of
the two. Thus, seen historically, segmentation was both a competitor and
a collaborator of paging. This subsection describes segmentation from this
historical perspective. Although the word “segmentation” is still used today
for some related concepts, segmentation in the sense described here has gone
extinct. As such, this subsection can be omitted with no great loss.

Recall that the basic premise of virtual memory is that a process uses
addresses as names for objects, whereas memory uses addresses as routing
information for storage locations. The defining property of segmentation
is that the processor’s virtual addresses name objects using two granulari-
ties: each virtual address names both an aggregate object, such as a table
or file, and a particular location within that object, such as a table entry
or a byte within a file. This is somewhat analogous to my name, “Max
Hailperin,” which identifies both the family to which I belong (Hailperin),
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and the particular person within that family (Max).
The aggregate objects, such as tables or files, that have names akin

to family names are called segments. Each process refers to its segments
by segment number. Each virtual address is divided into two parts: some
number of bits are a segment number, and the remaining bits are a location
within that segment.

On the surface, segmented virtual addresses may not seem very different
from paged ones. After all, you saw that paged virtual addresses are also
divided into two parts: a page number and an offset within that page. For
example, a 32-bit address might be divided into a 20-bit page number and
a 12-bit offset within the page. The key difference is that pages are purely
an implementation detail; they do not correspond to logical objects such as
files, stacks, or tables.

Because segments correspond to logical objects, they serve as natural
units for protection and sharing, as well as for named storage of persistent
objects in files. However, they cannot have a fixed size, such as 4 KiB. Each
segment will have its own natural size. For example, each file a process
accesses might be mapped into the virtual address space as its own segment.
If so, the segment sizes will need to match the file sizes, which could be quite
arbitrary.

A system employing pure segmentation maps each segment into a con-
tiguous range of physical memory. Instead of a page table, the system uses a
segment table, which specifies for each segment number the starting physical
address, the size, and the permissions.

Unlike paging, pure segmentation does not provide for flexible allocation
of physical memory; external fragmentation may occur, where it is hard to
find enough contiguous free memory to accommodate a segment. In addi-
tion, pure segmentation does not provide good support for moving inactive
information to disk, because only an entire segment can be transferred to or
from disk.

Because of these and similar problems, segmentation can be combined
with paging. Each process uses two-part addresses containing segment num-
bers and offsets. The MMU translates each of these addresses in two stages
using both a segment table and a page table. The end result is an offset
within a physical memory page frame. Thus, each segment may occupy any
available page frames, even if they are not contiguous, and individual pages
of the segment may be moved to disk.

Systems have combined segmentation with paging in two slightly differ-
ent ways, one exemplified by the IA-32 architecture and the other by the
Multics system. The key difference is whether all the segments share a sin-
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gle page table, as in the IA-32, or are given individual page tables, as in
Multics.

Figure 6.16 shows how segmentation and paging are used together in
the IA-32 architecture’s MMU. When the IA-32 MMU translates a virtual
address, it starts by looking up the segment number in a segment table,
yielding a starting address for the segment, a length, and permissions, just
like in systems that use pure segmentation. Assuming the permissions are
OK and the offset is legal with regard to the length, the MMU adds the
segment’s starting address to the offset. However, rather than treating the
sum as a physical address, the MMU treats it as a paged virtual address,
of the sort I have described in previous subsections. In IA-32 terminology,
this address is known as a linear address. The MMU looks up the linear
address in a single page table, shared by all the segments, in order to locate
the appropriate page frame.

Figure 6.17 shows an alternative method of combining segmentation and
paging, which was used in the Multics system. The Multics approach also
starts by looking up the segment number in a segment table, which again
provides information on the segment’s length and permissions to allow the
MMU to check the access for legality. However, this segment table does not
contain a starting address for the segment; instead, it contains a pointer to
the segment’s private page table. The MMU uses this segment-specific page
table to translate the offset within the segment, using techniques of the sort
you saw in previous subsections. The end result is again an offset within a
page frame.

Which approach is simpler for the operating system to manage? On
the surface, the IA-32 approach looks simpler, because it uses only a single
page table instead of one per segment. However, it has a significant disad-
vantage relative to the Multics approach. Remember that both approaches
allow space in physical memory to be flexibly allocated in individual, non-
contiguous page frames. However, the IA-32 approach forces each segment
to be allocated a single contiguous region of address space at the level of
linear addresses. Thus, the IA-32 approach forces the operating system to
deal with the complexities of contiguous allocation, with its potential for
external fragmentation.

Unlike pure segmentation, which is undeniably inferior to paging, the
combination of segmentation and paging seems attractive, as it combines
segmentation’s meaningful units for protection and sharing with paging’s
smaller fixed-size units for space allocation and data transfer. However,
many of the same protection and sharing features can be simulated using
paging alone. Probably as a result of this, many hardware designers decided
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Figure 6.16: The IA-32 architecture combines segmentation and paging us-
ing a single page table for all the segments. The segment table is used to
translate the segment number into a base address, to which the offset within
the segment is added, yielding a linear address. The linear address is then
translated to a physical address using the unified page table, as shown in
greater detail in Figure 6.14.
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Figure 6.17: The Multics system combines segmentation and paging using a
separate page table for each segment. The segment table is used to find the
appropriate page table, which is then used to translate the address within
the segment.

the cost of segmentation, in both money and performance, was not justified
by the gain. Therefore, they provided support only for paging. This created
a disincentive for the use of segmentation in operating systems; all popular
operating systems (such as UNIX, Microsoft Windows, and Linux) are de-
signed to be portable across multiple hardware architectures, some of which
don’t support segmentation. As a result, none of these operating systems
makes any use of segmentation, even on systems where it is supported. This
completes a cycle of disincentives; designers of modern architectures have
no reason to support segmentation, because modern operating systems do
not use it.

Although modern architectures no longer support segmentation, they do
have one feature that is reminiscent of the combination of segmentation and
paging. Recall that TLBs and hashed page tables use ASIDs to tag page
translations so that translations from different processes can coexist. I said
that a special register holds the ASID of the current process. In actual-
ity, many modern architectures allow each process to use several different
ASIDs; the top few bits of each virtual address select one of a group of ASID
registers. Thus, address translation occurs in two steps. First, the top bits
of the address are translated to an ASID; then the ASID and the remaining
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bits are translated into a page frame and offset. If the operating system
sets up several processes to use the same ASID for a shared library, they
will wind up sharing not only the page frames, but also the page table and
TLB entries. This is akin to processes sharing a segment. However, unlike
segmentation, it is invisible at the application level. Also, the number of
segments (ASIDs) per process may be quite limited: eight on the Itanium
and 16 on the 32-bit version of PowerPC.

6.4 Policies for Virtual Memory

Thus far, I have defined virtual memory, explained its usefulness, and shown
some of the mechanisms typically used to map pages to page frames. Mech-
anisms alone, however, are not enough. The operating system also needs
a set of policies describing how the mechanisms are used. Those policies
provide answers for the following questions:

• At what point is a page assigned a page frame? Not until the page is
first accessed, or at some earlier point? This decision is particularly
performance critical if the page needs to be fetched from disk at the
time it is assigned a page frame. For this reason, the policy that
controls the timing of page frame assignment is normally called the
fetch policy.

• Which page frame is assigned to each page? I have said that each
page may be assigned any available frame, but some assignments may
result in improved performance of the processor’s cache memory. The
policy that selects a page frame for a page is known as the placement
policy.

• If the operating system needs to move some inactive page to disk in
order to free up a page frame, which page does it choose? This is known
as the replacement policy, because the page being moved to disk will
presumably be replaced by a new page—that being the motivation for
freeing a page frame.

All of these policies affect system performance in ways that are quite
workload dependent. For example, a replacement policy that performs well
for one workload might perform terribly on another; for instance, it might
consistently choose to evict a page that is accessed again a moment later.
As such, these policies need to be chosen and refined through extensive
experimentation with many real workloads. In the following subsections,
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I will focus on a few sample policies that are reasonably simple and have
performed adequately in practice.

6.4.1 Fetch Policy

The operating system has wide latitude regarding when each page is assigned
a page frame. At one extreme, as soon as the operating system knows
about a page’s existence, it could assign a page frame. For example, when a
process first starts running, the operating system could immediately assign
page frames for all the pages holding the program and its statically allocated
data. Similarly, when a process asks the operating system to map a file into
the virtual memory address space, the operating system could assign page
frames for the entire file. At the other extreme, the operating system could
wait for a page fault caused by an access to a page before assigning that
page a page frame. In between these extremes lies a range of realistic fetch
policies that try to stay just a little ahead of the process’s needs.

Creating all page mappings right away would conflict with many of the
original goals for virtual memory, such as fast start up of programs that
contain large but rarely used portions. Therefore, one extreme policy can
be discarded. The other, however, is a reasonable choice under some circum-
stances. A system is said to use demand paging if it creates the mapping for
each page in response to a page fault when accessing that page. Conversely,
it uses prepaging if it attempts to anticipate future page use.

Demand paging has the advantage that it will never waste time creating
a page mapping that goes unused; it has the disadvantage that it incurs
the full cost of a page fault for each page. On balance, demand paging is
particularly appropriate under the following circumstances:

• If the process exhibits limited spatial locality, the operating system is
unlikely to be able to predict what pages are going to be used soon.
This makes paging in advance of demand less likely to pay off.

• If the cost of a page fault is particularly low, even moderately accurate
predictions of future page uses may not pay off, because so little is
gained each time a correct prediction allows a page fault to be avoided.

The Linux operating system uses demand paging in exactly the circum-
stances suggested by this analysis. The fetch policy makes a distinction
between zero-filled pages and those that are read from a file, because the
page fault costs are so different. Linux uses demand paging for zero-filled
pages because of their comparatively low cost. In contrast, Linux ordinarily
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uses a variant of prepaging (which I explain in the remainder of this sub-
section) for files mapped into virtual memory. This makes sense because
reading from disk is slow. However, if the application programmer notifies
the operating system that a particular memory-mapped file is going to be ac-
cessed in a “random” fashion, then Linux uses demand paging for that file’s
pages. The programmer can provide this information using the madvise

procedure.
The most common form of prepaging is clustered paging, in which each

page fault causes a cluster of neighboring pages to be fetched, including the
one incurring the fault. Clustered paging is also called read around, because
pages around the faulting page are read. (By contrast, read ahead reads the
faulting page and later pages, but no earlier ones.)

The details of clustered paging vary between operating systems. Linux
reads a cluster of sixteen pages aligned to start with a multiple of 16. For
example, a page fault on any of the first sixteen pages of a file will cause
those sixteen pages to be read. Thus, the extra fifteen pages can be all
before the faulting page, all after it, or any mix. Microsoft Windows uses a
smaller cluster size, which depends in part on the kind of page incurring the
fault: instructions or data. Because instruction accesses generally exhibit
more spatial locality than data accesses, Windows uses a larger cluster size
for instruction pages than for data pages.

Linux’s read around is actually a slight variant on the prepaging theme.
When a page fault occurs, the fault handler fetches a whole cluster of pages
into RAM but only updates the faulting page table entry. The other pages
are in RAM but not mapped into any virtual address space; this status is
known as the page cache. Subsequent page faults can quickly find pages
in the page cache. Thus, read around doesn’t decrease the total number
of page faults, but converts many from major page faults (reading disk) to
minor page faults (simply updating the page table).

Because reading from disk takes about 10 milliseconds and because read-
ing sixteen pages takes only slightly longer than reading one, the success rate
of prepaging doesn’t need to be especially high for it to pay off. For example,
if the additional time needed to read and otherwise process each prepaged
page is half a millisecond, then reading a cluster of sixteen pages, rather
than a single page, adds 7.5 milliseconds. This would be more than repaid
if even a single one of the fifteen additional pages gets used, because the
prepaging would avoid a 10-millisecond disk access time.
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6.4.2 Placement Policy

Just as the operating system needs to determine when to make a page res-
ident (on demand or in advance), it needs to decide where the page should
reside by selecting one of the unused page frames. This choice influences the
physical memory addresses that will be referenced and can thereby influence
the miss rate of the cache memory hardware.

Although cache performance is the main issue in desktop systems, there
are at least two other reasons why the placement policy may matter. In
large-scale multiprocessor systems, main memory is distributed among the
processing nodes. As such, any given processor will have some page frames
it can more rapidly access. Microsoft’s Windows Server 2003 takes this
effect into account when allocating page frames. Another issue, likely to
become more important in the future, is the potential for energy savings if
all accesses can be confined to only a portion of memory, allowing the rest
to be put into standby mode.

To explain why the placement policy influences cache miss rate, I need
to review cache memory organization. An idealized cache would hold the
n most recently accessed blocks of memory, where n is the cache’s size.
However, this would require each cache access to examine all n blocks,
looking to see if any of them contains the location being accessed. This
approach, known as full associativity, is not feasible for realistically large
caches. Therefore, real caches restrict any given memory location to only a
small set of positions within the cache; that way, only those positions need
to be searched. This sort of cache is known as set-associative. For exam-
ple, a two-way set-associative cache has two alternative locations where any
given memory block can be stored. Many caches, particularly those beyond
the first level (L1), use the physical address rather than the virtual address
to select a set.

Consider what would happen if a process repeatedly accesses three blocks
of memory that have the misfortune of all competing for the same set of a
two-way set-associative cache. Even though the cache may be large—capable
of holding far more than the three blocks that are in active use—the miss
rate will be very high. The standard description for this situation is to
say the cache is suffering from conflict misses rather than capacity misses.
Because each miss necessitates an access to the slower main memory, the
high rate of conflict misses will significantly reduce performance.

The lower the cache’s associativity, the more likely conflict misses are
to be a problem. Thus, careful page placement was more important in
the days when caches were external to the main microprocessor chips, as
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external caches are often of low associativity. Improved semiconductor tech-
nology has now allowed large caches to be integrated into microprocessors,
making higher associativity economical and rendering placement policy less
important.

Suppose, though, that an operating system does wish to allocate page
frames to reduce cache conflicts. How should it know which pages are im-
portant to keep from conflicting? One common approach is to assume that
pages that would not conflict without virtual memory address translation
should not conflict even with address translation; this is known as page col-
oring. Another common approach is to assume that pages that are mapped
into page frames soon after one another are likely to also be accessed in
temporal proximity; therefore, they should be given nonconflicting frames.
This is known as bin hopping.

The main argument in favor of page coloring is that it leaves intact any
careful allocation done at the level of virtual addresses. Some compiler au-
thors and application programmers are aware of the importance of avoiding
cache conflicts, particularly in high-performance scientific applications, such
as weather forecasting. For example, the compiler or programmer may pad
each row of an array with a little wasted space so that iterating down a
column of the array won’t repeatedly access the same set of the cache. This
kind of cache-conscious data allocation will be preserved by page coloring.

The main argument in favor of bin hopping is that experimental evidence
suggests it performs better than page coloring does, absent cache-conscious
data allocation. This may be because page coloring is less flexible than bin
hopping, providing only a way of deciding on the most preferred locations
in the cache for any given page, as opposed to ranking all possible locations
from most preferred to least.

6.4.3 Replacement Policy

Conceptually, a replacement policy chooses a page to evict every time a page
is fetched with all page frames in use. However, operating systems typically
try do some eviction in advance of actual demand, keeping an inventory
of free page frames. When the inventory drops below a low-water mark,
the replacement policy starts freeing up page frames, continuing until the
inventory surpasses a high-water mark. Freeing page frames in advance of
demand has three advantages:

• Last-minute freeing in response to a page fault will further delay the
process that incurred the page fault. In contrast, the operating system
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may schedule proactive work to maintain an inventory of free pages
when the hardware is otherwise idle, improving response time and
throughput.

• Evicting dirty pages requires writing them out to disk first. If the
operating system does this proactively, it may be able to write back
several pages in a single disk operation, making more efficient use of
the disk hardware.

• In the time between being freed and being reused, a page frame can
retain a copy of the page it most recently held. This allows the oper-
ating system to inexpensively recover from poor replacement decisions
by retrieving the page with only a minor page fault instead of a major
one. That is, the page can be retrieved by mapping it back in without
reading it from disk. You will see that this is particularly important
if the MMU does not inform the replacement policy which pages have
been recently referenced.

In a real operating system, a page frame may go through several tempo-
rary states between when it is chosen for replacement and when it is reused.
For example, Microsoft Windows may move a replaced page frame through
the following four inventories of page frames, as illustrated in Figure 6.18:

• When the replacement policy first chooses a dirty page frame, the
operating system moves the frame from a process’s page table to the
modified page list. The modified page list retains information on the
previous page mapping so that a minor page fault can retrieve the
page. (Microsoft calls this a soft page fault.)

• If a page frame remains in the modified page list long enough, a system
thread known as the modified page writer will write the contents out
to disk and move the frame to the standby page list. A page frame can
also move directly from a process’s page table to the standby page list
if the replacement policy chooses to evict a clean page. The standby
page list again retains the previous mapping information so that a soft
page fault can inexpensively recover a prematurely evicted page.

• If a page frame remains on standby for long enough without being
faulted back into use, the operating system moves it to the free page
list. This list provides page frames for the system’s zero page thread
to proactively fill with zeros, so that zero-filled pages will be available
to quickly respond to page faults, as discussed earlier. The operating
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Figure 6.18: Each page frame in Microsoft Windows that is not referenced
from a page table is included in one of the four page lists. Page frames
circulate as shown here. For example, the system can use a soft page fault
to recover a page frame from the modified or standby page list, if the page
contained in that page frame proves to still be needed after having been
evicted by the replacement policy.
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system also prefers to use a page frame from the free list when reading
a page in from disk.

• Once the zero page thread has filled a free page frame with zeros, it
moves the page frame to the zero page list, where it will remain until
mapped back into a process’s page table in response to a page fault.

Using a mechanism such as this example from Windows, an operating
system keeps an inventory of page frames and thus need not evict a page
every time it fetches a page. In order to keep the size of this inventory
relatively stable over the long term, the operating system balances the rate
of page replacements with the rate of page fetches. It can do this in either
of two different ways, which lead to the two major categories of replacement
policies, local replacement and global replacement.

Local replacement keeps the rate of page evictions and page fetches bal-
anced individually for each process. If a process incurs many page faults,
it will have to relinquish many of its own page frames, rather than pushing
other processes’ pages out of their frames. The replacement policy chooses
which page frames to free only from those held by a particular process. A
separate allocation policy decides how many page frames each process is
allowed.

Global replacement keeps the rate of page evictions and page fetches
balanced only on a system-wide basis. If a process incurs many page faults,
other process’s pages may be evicted from their frames. The replacement
policy chooses which page frames to free from all the page frames, regardless
which processes they are used by. No separate page frame allocation policy
is needed, because the replacement policy and fetch policy will naturally
wind up reallocating page frames between processes.

Of the operating systems popular today, Microsoft Windows uses local
replacement, whereas all the members of the UNIX family, including Linux
and Mac OS X, use global replacement. Microsoft’s choice of a local re-
placement policy for Windows was part of a broader pattern of following
the lead of Digital Equipment Corporation’s VMS operating system, which
has since become HP’s OpenVMS. The key reason why VMS’s designers
chose local replacement was to prevent poor locality of reference in one pro-
cess from greatly hurting the performance of other processes. Arguably, this
performance isolation is less relevant for a typical Windows desktop or server
workload than for VMS’s multi-user real-time and timesharing workloads.
Global replacement is simpler, and it more flexibly adapts to processes whose
memory needs are not known in advance. For these reasons, it tends to be
more efficient.
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Both local and global replacement policies may be confronted with a sit-
uation where the total size of the processes’ working sets exceeds the number
of page frames available. In the case of local replacement, this manifests it-
self when the allocation policy cannot allocate a reasonable number of page
frames to each process. In the case of global replacement, an excessive de-
mand for memory is manifested as thrashing, that is, by the system spending
essentially all its time in paging and process switching, producing extremely
low throughput.

The traditional solution to excess memory demand is swapping. The
operating system picks some processes to evict entirely from memory, writing
all their data to disk. Moreover, it removes those processes’ threads from the
scheduler’s set of runnable threads, so that they will not compete for memory
space. After running the remaining processes for a while, the operating
system swaps some of them out and some of the earlier victims back in.
Swapping adds to system complexity and makes scheduling much choppier;
therefore, some global replacement systems such as Linux omit it and rely
on users to steer clear of thrashing. Local replacement systems such as
Microsoft Windows, on the other hand, have little choice but to include
swapping. For simplicity, I will not discuss swapping further in this text.
You should know what it is, however, and should also understand that some
people incorrectly call paging swapping; for example, you may hear of Linux
swapping, when it really is paging. That is, Linux is moving individual pages
of a process’s address space to disk and back, rather than moving the entire
address space.

Having seen some of the broader context into which replacement policies
fit, it is time to consider some specific policies. I will start with one that is
unrealistic but which provides a standard against which other, more realistic
policies can be measured. If the operating system knew in advance the full
sequence of virtual memory accesses, it could select for replacement the page
that has its next use furthest in the future. This turns out to be more than
just intuitively appealing: one can mathematically prove that it optimizes
the number of demand fetches. Therefore, this replacement policy is known
as optimal replacement (OPT ).

Real operating systems don’t know future page accesses in advance.
However, they may have some data that allows the probability of differ-
ent page accesses to be estimated. Thus, a replacement policy could choose
to evict the page estimated to have the longest time until it is next used.
As one special case of this, consider a program that distributes its memory
accesses across the pages randomly but with unequal probabilities, so that
some pages are more frequently accessed than others. Suppose that these
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probabilities shift only slowly. In that case, pages which have been accessed
frequently in the recent past are likely to be accessed again soon, and con-
versely, those that have not been accessed in a long while are unlikely to be
accessed soon. As such, it makes sense to replace the page that has gone the
longest without being accessed. This replacement policy is known as Least
Recently Used (LRU ).

LRU replacement is more realistic than OPT, because it uses only infor-
mation about the past, rather than about the future. However, even LRU
is not entirely realistic, because it requires keeping a list of page frames in
order by most recent access time and updating that list on every memory
access. Therefore, LRU is used much as OPT is, as a standard against which
to compare other policies. However, LRU is not a gold standard in the same
way that OPT is; while OPT is optimal among all policies, LRU may not
even be optimal among policies relying only on past activity. Real processes
do not access pages randomly with slowly shifting probability distributions.
For example, a process might repeatedly loop through a set of pages, in
which case LRU will perform terribly, replacing the page that will be reused
soonest. Nonetheless, LRU tends to perform reasonably well in many realis-
tic settings; therefore, many other replacement policies try to approximate
it. While they may not replace the least recently used page, they will at
least replace a page that hasn’t been used very recently.

Before considering realistic policies that approximate LRU, I should in-
troduce one other extremely simple policy, which can serve as a foundation
for an LRU-approximating policy, though it isn’t one itself. The simple
policy is known as first in, first out replacement (FIFO). The name tells
the whole story: the operating system chooses for replacement whichever
page frame has been holding its current page the longest. Note the differ-
ence between FIFO and LRU; FIFO chooses the page that was fetched the
longest ago, even if it continues to be in frequent use, whereas LRU chooses
the page that has gone the longest without access. Figure 6.19 shows an
example where LRU outperforms FIFO and is itself outperformed by OPT.
This performance ordering is not universal; in Exercises 6.11 and 6.12, you
can show that FIFO sometimes outperforms LRU and that OPT does not
always perform strictly better than the others.

FIFO is not a very smart policy; in fact, early simulations showed that it
performs comparably to random replacement. Beyond this mediocre perfor-
mance, one sign that FIFO isn’t very smart is that it suffers from Belady’s
anomaly : increasing the number of page frames available may increase the
number of page faults, rather than decreasing it as one would expect. In
Exercise 6.13, you can generate an example of this counterintuitive perfor-
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Figure 6.19: In this comparison of the OPT, LRU, and FIFO replacement
policies, each pair of boxes represents the two page frames available on an
unrealistically small system. The numbers within the boxes indicate which
page is stored in each page frame. The numbers across the top are the
reference sequence, and the letters h and m indicate hits and misses. In
this example, LRU performs better than FIFO, in that it has one more hit.
OPT performs even better, with three hits.

mance phenomenon.
Both OPT and LRU are immune from Belady’s anomaly, as are all other

members of the class of stack algorithms. A stack algorithm is a replacement
policy with the property that if you run the same sequence of page references
on two systems using that replacement policy, one with n page frames and
the other with n + 1, then at each point in the reference sequence the n
pages that occupy page frames on the first system will also be resident in
page frames on the second system. For example, with the LRU policy, the
n most recently accessed pages will be resident in one system, and the n+ 1
most recently accessed pages will be resident in the other. Clearly the n+ 1
most recently accessed pages include the n most recently accessed pages. In
Exercise 6.14, you can come up with a similar justification for my claim that
OPT is a stack algorithm.

Recall that at the beginning of this subsection, I indicated that page
frames chosen for replacement are not immediately reused, but rather enter
an inventory of free page frames. The operating system can recover a page
from this inventory without reading from disk, if the page is accessed again
before the containing page frame is reused. This refinement turns out to
dramatically improve the performance of FIFO. If FIFO evicts a page that
is frequently used, chances are good that it will be faulted back in before the
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page frame is reused. At that point, the operating system will put it at the
end of the FIFO list, so it will not be replaced again for a while. Essentially,
the FIFO policy places pages on probation, but those that are accessed
while on probation aren’t actually replaced. Thus, the pages that wind up
actually replaced are those that were not accessed recently, approximating
LRU. This approximation to LRU, based on FIFO, is known as Segmented
FIFO (SFIFO).

To enable smarter replacement policies, some MMUs provide a reference
bit in each page table entry. Every time the MMU translates an address, it
sets the corresponding page’s reference bit to 1. (If the address translation
is for a write to memory, the MMU also sets the dirty bit that I mentioned
earlier.) The replacement policy can inspect the reference bits and set them
back to 0. In this way, the replacement policy obtains information on which
pages were recently used. Reference bits are not easy to implement effi-
ciently, especially in multiprocessor systems; thus, some systems omit them.
However, when they exist, they allow the operating system to find whether
a page is in use more cheaply than by putting it on probation and seeing
whether it gets faulted back in.

One replacement policy that uses reference bits to approximate LRU is
clock replacement. In clock replacement, the operating system considers the
page frames cyclically, like the hand of a clock cycling among the numbered
positions. When the replacement policy’s clock hand is pointing at a par-
ticular page, the operating system inspects that page’s reference bit. If the
bit is 0, the page has not been referenced recently and so is chosen for re-
placement. If the bit is 1, the operating system resets it to 0 and moves the
pointer on to the next candidate. That way, the page has a chance to prove
its utility, by having its reference bit set back to 1 before the pointer comes
back around. As a refinement, the operating system can also take the dirty
bit into account, as follows:

• reference = 1: set reference to 0 and move on to the next candidate

• reference = 0 and dirty = 0: choose this page for replacement

• reference = 0 and dirty = 1: start writing the page out to disk and
move on to the next candidate; when the writing is complete, set dirty
to 0

Replacement policies such as FIFO and clock replacement can be used
locally to select replacement candidates from within a process, as well as
globally. For example, some versions of Microsoft Windows use clock re-
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placement as the local replacement policy on systems where reference bits
are available, and FIFO otherwise.

6.5 Security and Virtual Memory

Virtual memory plays a central role in security because it provides the mech-
anism for equipping each process with its own protected memory. Because
this is the topic of Chapter 7, I will not discuss it further here. I will also
defer most other security issues to that chapter, because they have close re-
lationships with the process concept and with protection. However, there is
one classic virtual memory security issue that I can best discuss here, which
is particularly relevant to application programmers.

Recall that the most traditional use of virtual memory is to simulate
having lots of RAM by moving inactive pages to disk. This can create a
security problem if a program processes confidential data that should not
be permanently stored. For high-security applications, you may not want to
rely on the operating system to guard the data that is on disk. Instead, you
may want to ensure the sensitive information is never written to disk. That
way, even if an adversary later obtains physical possession of the disk drive
and can directly read all its contents, the sensitive information will not be
available.

Many cryptographic systems are designed around this threat model, in
which disks are presumed to be subject to theft. As a familiar example, most
systems do not store login passwords on disk. Instead, they store the results
of feeding the passwords through a one-way function. That suffices for check-
ing entered passwords without making the passwords themselves vulnerable
to exposure. Programs such as the login program and the password-changing
program store the password only temporarily in main memory.

Application programmers may think their programs keep sensitive data
only temporarily in volatile main memory and never store it out to disk. The
programmers may even take care to overwrite the memory afterward with
something safe, such as zeros. Even so, a lasting record of the confidential
data may be on the disk if the virtual memory system wrote out the page in
question during the vulnerable period. Because the virtual memory is inten-
tionally operating invisibly behind the scenes, the application programmers
will never know.

To protect your programs against this vulnerability, you need to forbid
the operating system from writing a sensitive region of memory out to disk.
In effect, you want to create an exception to the normal replacement pol-
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icy, in which certain pages are never chosen for replacement. The POSIX
standard API contains two procedures you can use for this purpose, mlock
and mlockall. Unfortunately, overuse of these procedures could tie up all
the physical memory, so only privileged processes are allowed to use them.
Of course, some programs handling sensitive information, such as the login
program, need to run with special privileges anyway for other reasons.

Exercises

6.1 In Section 6.1, I introduced an analogy with an executive and a file
clerk. Extend this analogy to a clerk serving multiple executives. Give
a plausible scenario where the clerk might need to understand that two
executives are referring to two different documents, even though they
are using the same name for the documents. Give another plausible
scenario where two executives would use different names to refer to
the same document. Explain how the clerk would cope with these
scenarios. What is the connection to virtual memory?

6.2 The file containing an executable program generally contains not only
the read-only text of the program, but also the initial contents for
some writable data structures. Explain how and why COW could be
used for this writable region.

6.3 I mentioned that typical page sizes have grown over the decades.
Brainstorm considerations that would make smaller pages better than
larger pages and other considerations that would make larger pages
better than smaller. Now think about what has changed over the
decades. Can you identify any argument favoring small pages that
has weakened over time? Can you identify any argument favoring
large pages that has strengthened over time? Presumably, these fac-
tors account for the historical trend in page sizes. On the other hand,
you may also be able to identify one or more factors that would have
suggested the reverse trend; if so, they were presumably outweighed.

6.4 The previous exercise concerns factors influencing the historical trend
in page sizes. On the other hand, there are also real-world influences
causing page sizes to remain unchanged for many years. Can you think
of what some of these influences might be?

6.5 Assume a page size of 4 KiB and the page mapping shown in Fig-
ure 6.10 on page 227. What are the virtual addresses of the first and
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last 4-byte words in page 6? What physical addresses do these trans-
late into?

6.6 Suppose the rightmost k bits within an address are used to represent an
offset within a page, with the remaining bits used for the page number.
Consider the location at offset j within page n. Give a mathematical
formula for the address of this location.

6.7 Suppose the rightmost k bits within a virtual or physical address are
used to represent an offset within a page or page frame, with the re-
maining bits used for the page number or page frame number. Suppose
that for all integers n, page number n is mapped by the page table
into page frame number f(n). Give a mathematical formula for the
physical address that corresponds with virtual address v.

6.8 Suppose an architecture uses 64-bit virtual addresses and 1-MiB pages.
Suppose that a linear page table is stored in full for each process,
containing a page table entry for every page number. Suppose that
the size of each page table entry is only 4 bytes. How large would each
page table be?

6.9 The rightmost arrow of Figure 6.13 on page 239 covers page numbers
1047552–1048575. Explain how these page numbers were calculated.
Afterwards, consider virtual address 4290777130. To what page does
it belong? Based on the information of Figure 6.13, can you tell where
that address is currently located in RAM?

6.10 My discussion of IA-32 multilevel page tables is based on the original
version of the architecture, which limited physical addresses to 32 bits.
Newer IA-32 processors offer an optional Physical Address Extension
(PAE ) mode in order to address up to sixteen times as much RAM.
One consequence of this is that page table entries (and page directory
entries) are increased to 8 bytes instead of 4. Each page and chunk of
page table is still 4 KiB.

(a) How many entries can each chunk of page table or page directory
now hold?

(b) How big a virtual address range does each chunk of page table
now span? (A page directory entry can also directly point to a
large page frame this size, just as without PAE it can directly
point to a 4-MiB page frame.)
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(c) How big a virtual address range can each page directory now
span?

(d) Because each page directory can no longer span the full 4-GiB
virtual address range, PAE requires adding a third level to the
top of the tree. The newly added root node doesn’t have as
large as branching factor as you calculated in part (a) for the
preexisting two levels. How many page directories does the root
point to?

(e) Draw a diagram analogous to Figure 6.13 on page 239 for PAE
mode.

6.11 Figure 6.19 on page 260 shows a small example where LRU has a lower
miss rate than FIFO replacement. Develop an example of similar size
in which FIFO has a lower miss rate than LRU.

6.12 In Figure 6.19 on page 260, both LRU and FIFO replacement have
higher miss rates than OPT. Develop an example of similar size in
which at least one of LRU and FIFO has as low a miss rate as OPT
does.

6.13 Show a small example of Belady’s anomaly. That is, give a small
integer, n, and a short sequence of page number references such that
when the FIFO replacement policy is given n initially empty page
frames, fewer misses result from the reference sequence than when
n+ 1 initially empty page frames are used.

6.14 Justify my claim that OPT is a stack algorithm. You may assume
that ties are broken by replacing the lowest numbered page of those
involved in the tie.

6.15 When conducting measurement studies, it is always good to conduct
multiple trials of any experiment, rather than reporting data only from
a single run. In the particular case of a study of how much paging is
caused by a particular activity, why is it important to reboot between
each experimental run and the next?

6.16 Multiple page table entries can point to the same page frame. In the
extreme case, an entire virtual address space of 264 bytes could be made
readable as zeros by having all the page table entries marked read-only
and pointed at a single zeroed-out page frame. What assumption in
the section on hashed page tables (Section 6.3.4) would this violate?
What problems would that cause?
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6.17 Consider the Windows operating system’s choice of a page frame to
use when reading a page in from disk.

(a) Why does it make sense to prefer a page frame from the free page
list over one from the zero page list?

(b) Why does it make sense to prefer a page frame from the free page
list over one from the standby page list?

(c) Why would a page frame on the modified page list be an even
worse choice than one on the standby page list?

Programming Projects

6.1 Write a program that loops many times, each time using an inner
loop to access every 4096th element of a large array of bytes. Time
how long your program takes per array access. Do this with varying
array sizes. Are there any array sizes when the average time suddenly
changes? Write a report in which you explain what you did, and the
hardware and software system context in which you did it, carefully
enough that someone could replicate your results.

6.2 On a system (such as Linux or most versions of UNIX, including Mac
OS X) that supports the mmap and madvise (or posix_madvise) sys-
tem calls, read the online manual pages for them and write four simple
C test programs that map a large file into virtual memory. Two pro-
grams should use madvise to indicate random access; one of them
should then genuinely access the file randomly, whereas the other
should access all of it sequentially. The other two programs should
use madvise to indicate sequential access; again, one should behave
sequentially and one randomly. Time the programs, rebooting the
computer before each run. Write a report in which you explain what
you did, and the hardware and software system context in which you
did it, carefully enough that someone could replicate your results. Your
report should draw some conclusions from your experiments: does cor-
rect use of madvise seem important to the performance of your test
system?
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Exploration Projects

6.1 On a Linux system, you can find the files mapped into a process’s
address space by typing a command of the following form:

cat /proc/n/maps

where n is the process’s ID number. Read the documentation for proc
in Section 5 of the online manual in order to understand the output
format. Then look through the various processes’ maps to see if you
can find a case where the same file is mapped into two processes’
address spaces, but at different virtual addresses. (On most Linux
systems with a variety of networking software and so forth, such cases
will exist.)

6.2 On a Linux or UNIX system, including Mac OS X, you can find in-
formation about processes by using the ps command. To include all
processes, you can provide the option -A. Other options allow you to
specify the information obtained for each process. In particular, the
command

ps -A -o rss= -o vsz=

provides two columns of output, namely the resident set size (physical
memory) and virtual size for each process. Presumably, the virtual
size is always at least as large as the resident set size; the ratio of
resident set size to virtual size is somewhere between 0 and 1. Using
the general ability to pipe the output from one command into another,
you can use the pipeline

ps -A -o rss= -o vsz= | awk ’$2!=0 {printf "%f\n",$1/$2}’ | sort -n

to obtain a numerically sorted list of the ratios for all processes that
have nonzero virtual sizes. If you want to do any further processing
with this list, you can put it into a file like this:

ps -A -o rss= -o vsz= | awk ’$2!=0 {printf "%f\n",$1/$2}’ | sort -n > ratios

Try this out on one or more systems. What range do the ratios span?
What is the median ratio?
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6.3 If you compile and run the C program in Figure 6.20 on a Linux or
UNIX system (including Mac OS X), it will run the ps l command as
in the preceding project, and in the output you will be able to see its
own virtual memory and resident set sizes. The program contains a
large zero-filled array, large_array, most of which goes unused. How
do the virtual and resident set sizes of this process compare? If you
change the size of large_array and recompile and run, which size
changes? What does the unit of measure seem to be?

6.4 Use the same command as in Exploration Project 6.1 to determine
how sparse some processes’ address spaces are. What fraction of the
range from lowest mapped address to highest mapped address belongs
to any mapping? How many contiguous address ranges are occupied
and how many unoccupied holes are there? Are the holes large enough
that a linear or multilevel page table could plausibly take advantage
of them?

6.5 In Section 6.2.8, I estimated the relative price per gigabyte and speed
of disk versus RAM. Look up some prices and specifications on the web
and make your own estimates of these ratios. Explain the assumptions
you make and data you use.

6.6 As explained in the text, Linux normally uses a form of clustered
paging, also known as read around. Using the madvise procedure,
you can override this normal behavior for a particular region of vir-
tual memory, marking it as randomly accessed (which turns off all
prepaging) or sequentially accessed (which switches to a variant form
of prepaging). Instead of experimenting with these modes selectively,

#include <stdlib.h>

int large_array[10000000];

int main(int argc, char *argv[]){

system("ps l"); /* note: letter l */

return large_array[0];

}

Figure 6.20: This C program, own-size.c, shows its own size, including the
size of a large array of zeros, by running the ps command.
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as in Programming Project 6.2, you can experiment with changing
all virtual memory to use one of them, provided you have a system
on which you can build and install Linux kernels. Near the top of
the kernel source file include/linux/mm.h, you will find the defi-
nitions of VM_NormalReadHint(v), VM_SequentialReadHint(v), and
VM_RandomReadHint(v). Change these definitions so that one of them
is defined as 1 and the other two are defined as 0. Now all virtual mem-
ory areas will be treated in accordance with the mode you defined as
1, independent of any uses of madvise. Build the kernel with your
change and conduct an experiment in which you compare the perfor-
mance of some programs running under your variant kernel with their
performance running under a normal kernel. (You may want to build
more than one variant kernel in order to try out more than one of the
modes.) Write a report clearly presenting your results and carefully
explaining what you did, and in which hardware and software system
context you did it, so that someone else could replicate your results.
(This project was written when the kernel was at version 2.6.11; how-
ever, the relevant aspects of the source code seem to be stable across
quite a few versions.)

6.7 In the end-of-chapter notes, I trace paging back to seminal articles pub-
lished in the early 1960s by the designers of the Atlas computer, and I
also report that this computer was the first to use a small fast memory
and a large slow memory to simulate a large fast memory. However, in
those same notes, I also cite a recent article by Jessen, which brought
to light an unpublished doctoral dissertation by Güntsch from 1956.
This dissertation proposed a similar approach to simulating a large
fast memory. Read these articles and write a comparison of Güntsch’s
work with that of the Atlas team. Beyond the dates, the most obvi-
ous difference is that one was an unpublished proposal for an unbuilt
machine and had no apparent influence, whereas the other resulted in
both an actual machine and publications that were frequently refer-
enced by later writers. However, you should go beyond these surface
issues and compare the substance of the two proposals. Which is more
like today’s virtual memory?

Notes

I introduced the virtual memory concept by stressing the distinction between
addresses as names for information and as locations of storage. Fothering-
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ham made this point in one of the earliest papers on virtual memory, con-
cerning the pioneering Atlas computer [59]. Dennis made the same point at
greater length a few years later [47]. These two papers from the 1960s were
seminal with regard to paging and segmentation, respectively. (Even be-
fore Dennis’s paper, segmentation was used commercially in the Burroughs
B5000 system [26].) At the end of that decade, Denning wrote an influen-
tial survey of the whole virtual memory field, including both paging and
segmentation [46].

Many of the uses I list for virtual memory can be traced back to the
earliest papers. Most famously, the simulation of a large fast memory by a
small fast memory and a large slow external storage device was first used in
the Atlas computer [59, 89]. (See also Exploration Project 6.7 with regard
to a related mechanism proposed even earlier by Güntsch, which Jessen has
recently described [85].) In this context, Denning developed the working set
concept [45]. One virtual memory application of more modern vintage is
message passing with COW; for a recent example, see Mac OS X [7].

While discussing applications of virtual memory, I touched on a cou-
ple implementation issues. The compromise approach to dirty bits (and
reference bits) employed in Itanium can be found in reference [84]. A read-
able example of the performance impact of cache bypassing when prezeroing
pages can be found in a paper on Linux for the PowerPC [53].

In introducing the representations of address mappings, I mentioned that
mixing page sizes can be beneficial. One important body of research on
this topic is Talluri’s dissertation [146]. Navarro showed that transparent
support for mixed page sizes is practical [110]. Linux has moved in this
direction; prior to version 2.6.38, it used larger-than-normal pages only for
specialized purposes, but version 2.6.38’s “transparent huge pages” feature
allows ordinary application processes’ pages to be automatically coalesced
when possible and divided back up when necessary.

Specific information on each of the example systems I mentioned is avail-
able: VAX/VMS [99], Itanium [84], AMD64 (including IA-32 compatibil-
ity) [3], Multics [15, 42], and Microsoft Windows [126].

Hashed page tables are part of an interesting historical design progres-
sion, starting with the Atlas and continuing on past hashed page tables to
clustered page tables, which have yet to be deployed commercially. The
Atlas [59, 89] used a fully associative inverted page table. That is, it had
an array with one storage location per page frame; element n contained the
page number resident in page frame n. To locate a given page number (for
address translation), special hardware checked all the entries in the inverted
page table in parallel. This hardware does not scale up to large numbers
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of page frames. Therefore, the IBM System/38 replaced the parallel search
with a hash table, while still retaining the inverted page table itself [81].
Each entry in the hash table pointed to an entry in the inverted page table.
HP originally adopted this same approach for their Precision Architecture,
but then recognized that the hash table and the inverted page table could be
merged together, forming today’s hashed page table, as described by Huck
and Hays [83]. (Huck and Hays also introduced the notion of software TLB.)

Recall that linear and multilevel page tables store page table entries con-
secutively for a chunk of sequential page numbers (for example, 1024 pages).
These chunks may contain some unused entries, wasting space. Hashed page
tables, on the other hand, store each page table entry individually, so that
no space is wasted on unused entries. However, each entry needs to be sig-
nificantly larger. The optimal balance point for space might be somewhere
between the two extremes. Also, if page table references exhibit spatial
locality, keeping at least a small cluster of consecutive pages’ entries ad-
jacent could speed access. Based on these observations, Talluri, Hill, and
Khalidi [145] proposed clustered page tables, a variant of hashed page tables
where each entry in the hash table contains page table entries for several
consecutive pages.

Kessler and Hill [88] evaluated page coloring and bin hopping, as well as
other approaches to cache-conscious page placement.

Belady [12] published an early comparison of replacement policies, in-
cluding FIFO, LRU, and a more complex version of OPT he called MIN.
In a separate publication [13], he and coworkers showed that FIFO was
subject to the anomaly which has come to bear his name; see also refer-
ence [115]. Mattson et al. [104] refined OPT to its modern form, proved
its optimality, introduced the concept of stack algorithms, and proved they
were immune from Belady’s anomaly. Aho, Denning, and Ullman [2] an-
alyzed optimality under probabilistic models; in particular, they showed
that LRU approximates optimal replacement given slowly varying reference
probabilities. Turner and Levy [150] showed how Segmented FIFO page re-
placement can approximate LRU. Their work was in the context of VMS’s
local replacement. A similar replacement policy, again using cheap recla-
mation of recently freed pages as a substitute for reference bits, but this
time global and patterned on clock replacement, was used by Babaoglu and
Joy [9] shortly thereafter.
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Chapter 7

Processes and Protection

7.1 Introduction

At this point, having seen both the threads that perform computations and
the virtual memory spaces in which those computations take place, you are
finally prepared to synthesize the notion of process. Processes play a central
role in the view of an operating system as experienced by most system ad-
ministrators, application programmers, and other moderately sophisticated
computer users. In particular, the technical concept of process comes the
closest to the informal idea of a running program.

The concept of process is not entirely standardized across different op-
erating systems. Not only do some systems use a different word (such as
“task”), but also the details of the definition vary. Nonetheless, most main-
stream systems are based on definitions that include the following:

One or more threads Because a process embodies a running program,
often the process will be closely associated with a single thread. How-
ever, some programs are designed to divide work among multiple
threads, even if the program is run only once. (For example, a web
browser might use one thread to download a web page while another
thread continues to respond to the user interface.)

Virtual memory accessible to those threads The word “accessible” im-
plies that some sort of protection scheme ensures that the threads
within a process access only the memory for which that process has
legitimate access rights. As you will see, the mainstream protection
approach is for each process to have its own virtual memory address
space, shared by the threads within that process. However, I will also
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present an alternative, in which all processes share a single address
space, but with varying access rights to individual objects within that
address space. In any case, the access rights are assigned to the pro-
cess, not to the individual threads.

Other access rights A process may also hold the rights to resources other
than memory. For example, it may have the right to update a particu-
lar file on disk or to service requests arriving over a particular network
communication channel. I will address these issues in Chapters 8 and
9. For now, I will sketch two general approaches by which a process
can hold access rights. Either the process can hold a specific capability,
such as the capability to write a particular file, or it can hold a general
credential, such as the identification of the user for whom the process
is running. In the latter case, the credential indirectly implies access
rights, by way of a separate mechanism, such as access control lists.

Resource allocation context Limited resources (such as space in mem-
ory or on disk) are generally associated with a process for two reasons.
First, the process’s termination may serve to implicitly release some of
the resources it is holding, so that they may be reallocated. Operating
systems generally handle memory in this way. Second, the process may
be associated with a limited resource quota or with a billing account
for resource consumption charges. For simplicity, I will not comment
on these issues any further.

Miscellaneous context Operating systems often associate other aspects
of a running program’s state with the process. For example, systems
such as Linux and UNIX (conforming to the POSIX standard) keep
track of each process’s current working directory. That is, when any
thread in the process accesses a file by name without explicitly indi-
cating the directory containing the file, the operating system looks for
the file starting from the process’s current working directory. For his-
torical reasons, the operating system tracks a single current working
directory per process, rather than one per thread. Yet this state might
have been better associated with the individual threads, as it is hard
to see why a change-directory operation in one thread should upset
file operations underway in another concurrently running thread. Be-
cause there is no big master narrative to these items of miscellaneous
context, I won’t consider them further in this chapter.

From this list, you can see that many of the key aspects of processes
concern protection, and these are the aspects on which I will focus. Before
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diving into a consideration of various approaches to protection, however, I
will devote Section 7.2 to the basics of how the POSIX process management
API can be used, such as how a thread running in one process creates
another process and how a process exits. This section should serve to make
the use of processes more concrete. Studying this API will also allow you to
understand how the shell (command interpreter) executes user commands.

After studying the basics of POSIX process management, you will spend
the remaining sections of the chapter learning various aspects of protection.
Keep in mind that protection is a large and diverse area; although I will in-
troduce several different protection mechanisms in this chapter, I will leave
many topics for later chapters. I postpone some protection questions spe-
cific to file systems to Chapter 8. Also, protection is intimately related to
security, which I cover in Chapter 11. In particular, my emphasis here will
be on basic mechanisms. I will defer to Chapter 11 all questions of how
those mechanisms are deployed to enforce chosen security policies.

I will divide this current chapter’s treatment of protection among three
sections. Section 7.3 addresses the fundamental question of limiting each
process’s access to memory. After showing how processors provide two dis-
tinct execution modes to serve as the foundation for any protection system,
I will present two approaches to memory protection: one with a separate
address space for each process, and one with a single address space. Mov-
ing beyond memory protection, Section 7.4 first presents the fundamentals
of access rights, then examines the two approaches I mentioned for repre-
senting access rights: capabilities and the combination of credentials with
access control lists. The assumption throughout these two sections is that
protection operates at the granularity of processes. Section 7.5 examines two
alternatives, of finer and coarser granularity. The finer-grained protection
approach protects parts of processes from each other. The coarser-grained
approach, on the other hand, protects entire simulated machines from one
another, with each simulated machine running its own operating system.

In Section 7.6, the chapter concludes with an examination of some of the
security issues most directly raised by material in the earlier sections.

7.2 POSIX Process Management API

All operating systems provide mechanisms for creating new processes, ter-
minating existing processes, and performing related actions. The details
vary from system to system. To provide a concrete example, I will present
relevant features of the POSIX API, which is used by Linux and UNIX,
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including by Mac OS X.
In the POSIX approach, each process is identified by a process ID num-

ber, which is a positive integer. Each process (with one exception) comes
into existence through the forking of a parent process. The exception is the
first process created when the operating system starts running. A process
forks off a new process whenever one of the threads running in the parent
process calls the fork procedure. In the parent process, the call to fork

returns the process ID number of the new child process. (If an error occurs,
the procedure instead returns a negative number.) The process ID number
may be important to the parent later, if it wants to exert some control over
the child or find out when the child terminates.

Meanwhile, the child process can start running. The child process is
in many regards a copy of the parent process. For protection purposes, it
has the same credentials as the parent and the same capabilities for such
purposes as access to files that have been opened for reading or writing. In
addition, the child contains a copy of the parent’s address space. That is,
it has available to it all the same executable program code as the parent,
and all of the same variables, which initially have the same values as in the
parent. However, because the address space is copied instead of shared, the
variables will start having different values in the two processes as soon as
either performs any instructions that store into memory. (Special facilities
do exist for sharing some memory; I am speaking here of the normal case.)
Of course, the operating system doesn’t need to actually copy each page of
the address space. It can use copy on write (COW) to avoid (or at least
postpone) most of the copying.

Because the child process is nearly identical to the parent, it starts off
by performing the same action as the parent; the fork procedure returns to
whatever code called it. However, application programmers generally don’t
want the child to continue executing all the same steps as the parent; there
wouldn’t be much point in having two processes if they behaved identically.
Therefore, the fork procedure gives the child process an indication that it
is the child so that it can behave differently. Namely, fork returns a value
of 0 in the child. This contrasts with the return value in the parent process,
which is the child’s process ID number, as mentioned earlier.

The normal programming pattern is for any fork operation to be im-
mediately followed by an if statement that checks the return value from
fork. That way, the same program code can wind up following two differ-
ent courses of action, one in the parent and one in the child, and can also
handle the possibility of failure, which is signaled by a negative return value.
The C++ program in Figure 7.1 shows an example of this; the parent and
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child processes are similar (both loop five times, printing five messages at
one-second intervals), but they are different enough to print different mes-
sages, as shown in the sample output in Figure 7.2. Keep in mind that this
output is only one possibility; not only can the ID number be different, but
the interleaving of output from the parent and child can also vary from run
to run. This example program also illustrates that the processes each get
their own copy of the loopCount variable. Both start with the initial value,
5, which was established before the fork. However, when each process decre-
ments the counter, only its own copy is affected. In Programming Projects
7.1 and 7.2, you can write variants of this program.

In early versions of UNIX, only one thread ever ran in each process. As
such, programs that involved concurrency needed to create multiple pro-
cesses using fork. In situations such as that, it would be normal to see a
program like the one in Figure 7.1, which includes the full code for both par-
ent and child. Today, however, concurrency within a program is normally
done using a multithreaded process. This leaves only the other big use of
fork: creating a child process to run an entirely different program. In this
case, the child code in the forking program is only long enough to load in
the new program and start it running. This happens, for example, every
time you type a program’s name at a shell prompt; the shell forks off a child
process in which it runs the program. Although the program execution is
distinct from the process forking, the two are used in combination. There-
fore, I will turn next to how a thread running in a process can load a new
program and start that program running.

The POSIX standard includes six different procedures, any one of which
can be used to load in a new program and start it running. The six are
all variants on a theme; because they have names starting with exec, they
are commonly called the exec family. Each member of the exec family must
be given enough information to find the new program stored in a file and
to provide the program with any arguments and environment variables it
needs. The family members differ in exactly how the calling program pro-
vides this information. Because the family members are so closely related,
most systems define only the execve procedure in the kernel of the operating
system itself; the others are library procedures written in terms of execve.

Because execl is one of the simpler members of the family, I will use
it for an example. The program in Figure 7.3 prints out a line identifying
itself, including its own process ID number, which it gets using the getpid

procedure. Then it uses execl to run a program, named ps, which prints out
information about running processes. After the call to execl comes a line
that prints out an error message, saying that the execution failed. You may
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#include <unistd.h>

#include <stdio.h>

#include <iostream>

using namespace std;

int main(){

int loopCount = 5; // each process will get its own loopCount

cout << "I am still only one process." << endl;

pid_t returnedValue = fork();

if(returnedValue < 0){

// still only one process

perror("error forking"); // report the error

return -1;

} else if (returnedValue == 0){

// this must be the child process

while(loopCount > 0){

cout << "I am the child process." << endl;

loopCount--; // decrement child’s counter only

sleep(1); // wait a second before repeating

}

} else {

// this must be the parent process

while(loopCount > 0){

cout << "I am the parent process; my child’s ID is "

<< returnedValue << "." << endl;

loopCount--; // decrement parent’s counter only

sleep(1);

}

}

return 0;

}

Figure 7.1: This C++ program, forker.cpp, demonstrates process creation
using fork. The program prints eleven lines of output, including five each
from the parent and child process after the call to fork.
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I am still only one process.

I am the child process.

I am the parent process; my child’s ID is 23307.

I am the parent process; my child’s ID is 23307.

I am the child process.

I am the parent process; my child’s ID is 23307.

I am the child process.

I am the parent process; my child’s ID is 23307.

I am the child process.

I am the parent process; my child’s ID is 23307.

I am the child process.

Figure 7.2: This sample output from the forker program of Figure 7.1
shows just one possible sequence of events.

find it surprising that the error message seems to be issued unconditionally,
without an if statement testing whether an error in fact occurred. The
reason for this surprising situation is that members of the exec family return
only if an error occurs; if all is well, the new program has started running,
replacing the old program within the process, and so there is no possibility
of returning in the old program.

Looking in more detail at the example program’s use of execl, you can
see that it takes several arguments that are strings, followed by the special
NULL pointer. The reason for the NULL is to mark the end of the list of
strings; although this example had three strings, other uses of execl might
have fewer or more. The first string specifies which file contains the program
to run; here it is /bin/ps, that is, the ps program in the /bin directory,
which generally contains fundamental programs. The remaining strings are
the so-called “command-line arguments,” which are made available to the
program to control its behavior. Of these, the first is conventionally a repeat
of the command’s name; here, that is ps. The remaining argument, axl,
contains both the letters ax indicating that all processes should be listed
and the letter l indicating that more complete information should be listed
for each process. As you can see from the sample output in Figure 7.4, the
exact same process ID that is mentioned in the initial message shows up
again as the ID of the process running the ps axl command. The process
ID remains the same because execl has changed what program the process
is running without changing the process itself.

One inconvenience about execl is that to use it, you need to know the
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#include <unistd.h>

#include <stdio.h>

#include <iostream>

using namespace std;

int main(){

cout << "This is the process with ID " << getpid()

<< ", before the exec." << endl;

execl("/bin/ps", "ps", "axl", NULL);

perror("error execing ps");

return -1;

}

Figure 7.3: This C++ program, execer.cpp, illustrates how the procedure
execl (a member of the exec family) can be used to change which program
the current process is running. The same process ID that this program
reports as its own is later shown by the ps program as being its own, because
the same process starts running the ps program. Note also the unconditional
error message after the call to execl; only if execl fails does the calling
program continue to run.

This is the process with ID 3849, before the exec.

UID PID ... COMMAND

.

.

.

0 3849 ... ps axl

.

.

.

Figure 7.4: This sample output from the execer program in Figure 7.3
was made narrower and shorter by omitting many of the columns of output
produced by the ps axl command as well as many of its lines or output. The
remaining output suffices to show that the process had process ID (PID) 3849
before it executed ps axl, and that the same process became the process
running the ps axl command.
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directory in which the program file is located. For example, the previous
program will not work if ps happens to be installed somewhere other than
/bin on your system. To avoid this problem, you can use execlp. You can
give this variant a filename that does not include a directory, and it will
search through a list of directories looking for the file, just like the shell
does when you type in a command. This can be illustrated with an example
program that combines fork with execlp, as shown in Figure 7.5.

This example program assumes you are running the X Window System,
as on most Linux or UNIX systems. It runs xclock, a program that displays
a clock in a separate window. If you run the launcher program from a shell,
you will see the clock window appear, and your shell will prompt you for the
next command to execute while the clock keeps running. This is different
than what happens if you type xclock directly to the shell. In that case,
the shell waits for the xclock program to exit before prompting for another
command. Instead, the example program is more similar to typing xclock &

to the shell. The & character tells the shell not to wait for the program to
exit; the program is said to run “in the background.” The way the shell does
this is exactly the same as the sample program: it forks off a child process,
executes the program in the child process, and allows the parent process
to go on its way. In the shell, the parent loops back around to prompt for
another command.

When the shell is not given the & character, it still forks off a child process
and runs the requested command in the child process, but now the parent
does not continue to execute concurrently. Instead the parent waits for the
child process to terminate before the parent continues. The same pattern
of fork, execute, and wait would apply in any case where the forking of a
child process is not to enable concurrency, but rather to provide a separate
process context in which to run another program.

In order to wait for a child process, the parent process can invoke the
waitpid procedure. This procedure takes three arguments; the first is the
process ID of the child for which the parent should wait, and the other two
can be zero if all you want the parent to do is to wait for termination. As
an example of a process that waits for each of its child processes, Figure 7.6
shows a very stripped-down shell. This shell can be used to run the user’s
choice of commands, such as date, ls, and ps, as illustrated in Figure 7.7. A
real shell would allow command line arguments, offer background execution
as an option, and provide many other features. Nonetheless, you now un-
derstand the basics of how a shell runs programs. In Programming Projects
7.3 and 7.4, you can add some of the missing features.

Notice that a child process might terminate prior to the parent process
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#include <unistd.h>

#include <stdio.h>

int main(){

pid_t returnedValue = fork();

if(returnedValue < 0){

perror("error forking");

return -1;

} else if (returnedValue == 0){

execlp("xclock", "xclock", NULL);

perror("error execing xclock");

return -1;

} else {

return 0;

}

}

Figure 7.5: This C program, launcher.c, runs xclock without waiting for
it. The program does so by forking off a child process and executing xclock

in that child process. The result is that xclock continues to run in its own
window while the parent process exits, allowing the shell from which this
program was run to prompt for another command.
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#include <unistd.h>

#include <stdio.h>

#include <sys/wait.h>

#include <string>

#include <iostream>

using namespace std;

int main(){

while(1){ // loop until return

cout << "Command (one word only)> " << flush;

string command;

cin >> command;

if(command == "exit"){

return 0;

} else {

pid_t returnedValue = fork();

if(returnedValue < 0){

perror("error forking");

return -1;

} else if (returnedValue == 0){

execlp(command.c_str(), command.c_str(), NULL);

perror(command.c_str());

return -1;

} else {

if(waitpid(returnedValue, 0, 0) < 0){

perror("error waiting for child");

return -1;

}

}

}

}

}

Figure 7.6: This C++ program, microshell.cpp, is a stripped-down shell
that waits for each child process.
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Command (one word only)> date

Thu Feb 12 09:33:26 CST 2004

Command (one word only)> ls

microshell microshell.cpp microshell.cpp~

Command (one word only)> ps

PID TTY TIME CMD

23498 pts/2 00:00:00 bash

24848 pts/2 00:00:00 microshell

24851 pts/2 00:00:00 ps

Command (one word only)> exit

Figure 7.7: This sample interaction shows the date, ls, and ps commands
being run within the microshell from Figure 7.6.

invoking waitpid. As such, the waitpid procedure may not actually need
to wait, contrary to what its name suggests. It may be able to immedi-
ately report the child process’s termination. Even in this case, invoking the
procedure is still commonly referred to as “waiting for” the child process.
Whenever a child process terminates, if its parent is not already waiting for
it, the operating system retains information about the terminated process
until the parent waits for it. A terminated process that has not yet been
waited for is known as a zombie. Waiting for a zombie makes its process ID
number available for assignment to a new process; the memory used to store
information about the process can also be reused. This is known as reap-
ing the zombie. Programming Project 7.4 contains additional information
about reaping zombies.

The exec family of procedures interacts in an interesting fashion with
protection mechanisms. When a process executes a program file, there is
ordinarily almost no impact on the process’s protection context. Any capa-
bilities (for reading and writing files, for example) remain intact, and the
process continues to operate with the same user identification credentials.
This means that when you run a program, generally it is acting on your
behalf, with the access rights that correspond to your user identification.
However, there is one important exception. A program file can have a spe-
cial set user ID (setuid) bit set on it, in which case, a process that executes
the program acquires the credential of the file’s owner. (The owner of a file
is ordinarily the user who created the file unless the ownership has been
explicitly changed.)

Because a setuid program can check which user ran it, and can check
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all sorts of other data (the time of day, for example), the setuid mechanism
provides an extremely general mechanism for granting access rights. You
can grant any subset of your rights to any other users you choose, under any
conditions that you can program, by writing a setuid program that tests
for the conditions and then performs the controlled access. As a mundane
example, you can create a game program that has the ability to write into
a file of high scores, no matter who is running it, even though other users
are forbidden from directly writing into the file. A similar program you
have likely encountered is the one you use to change your password. That
program can update a password database that you do not have permission
to directly modify. As I will discuss in Section 7.6, the setuid mechanism’s
flexibility makes it useful for enforcing security policies; however, I will also
point out in Section 7.6 that the same mechanism is the source of many
security pitfalls. (Even ordinary program execution, with credentials left
unchanged, can be a security problem, as I will discuss.)

At this point, you have seen many of the key elements of the process
life cycle. Perhaps the most important omission is that I haven’t shown
how processes can terminate, other than by returning from the main proce-
dure. A process can terminate itself by using the exit procedure (in Java,
System.exit), or it can terminate another process using the kill proce-
dure (see the documentation for details). Rather than exploring process
programming further here, I will move on to the mechanisms that operating
systems use to protect the memory occupied by processes. If you want to
pursue application programming further, the notes section at the end of the
chapter suggests additional reading.

7.3 Protecting Memory

Memory protection is the most fundamental barrier between processes, as
well as between each process and the operating system. If a process could
freely write into the operating system’s data structures, the operating system
would be unable to enforce any other kind of protection. In fact, if a process
could write into the memory that holds the operating system’s instructions,
the process could effectively switch to an entirely different operating system
of its own choosing. Moreover, if processes could freely write into each
other’s memory, a process without the ability to write a file (for example)
could manipulate another into doing so for it. Thus, to understand any other
kind of protection, you need to first understand how memory is protected.

Section 7.3.1 explains the foundation of this protection, which is the
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processor’s ability to switch between a restricted and an unrestricted mode
of operation. Sections 7.3.2 and 7.3.3 explain how memory protection can
be built on that foundation in either of two ways: by giving each process
its own virtual memory address space or by giving the processes differing
access rights within a single address space.

7.3.1 The Foundation of Protection: Two Processor Modes

Whether the operating system gives each process its own address space, or
instead gives each process its own access rights to portions of a shared ad-
dress space, the operating system needs to be privileged relative to the pro-
cesses. That is, the operating system must be able to carry out actions, such
as changing address spaces or access rights, that the processes themselves
cannot perform. Otherwise, the processes wouldn’t be truly contained; they
could get access to each other’s memory the same way the operating system
does.

For this reason, every modern processor can run in two different modes,
one for the operating system and one for the application processes. The
names of these modes vary from system to system. The more privileged
mode is sometimes called kernel mode, system mode, or supervisor mode. Of
these, kernel mode seems to be in most common use, so I will use it. The
less privileged mode is often called user mode.

When the processor is in kernel mode, it can execute any instructions it
encounters, including ones to change memory accessibility, ones to directly
interact with I/O devices, and ones to switch to user mode and jump to
an instruction address that is accessible in user mode. This last kind of
instruction is used when the operating system is ready to give a user process
some time to run.

When the processor is in user mode, it will execute normal instructions,
such as add, load, or store. However, any attempt to perform hardware-level
I/O or change memory accessibility interrupts the process’s execution and
jumps to a handler in the operating system, an occurrence known as a trap.
The same sort of transfer to the operating system occurs for a page fault or
any interrupt, such as a timer going off or an I/O device requesting atten-
tion. Additionally, the process may directly execute an instruction to call an
operating system procedure, which is known as a system call. For example,
the process could use system calls to ask the operating system to perform
the fork and execve operations that I described in Section 7.2. System calls
can also request I/O, because the process doesn’t have unmediated access
to the I/O devices. Any transfer to an operating system routine changes
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the operating mode and jumps to the starting address of the routine. Only
designated entry points may be jumped to in this way; the process can’t
just jump into the middle of the operating system at an arbitrary address.

The operating system needs to have access to its own portion of memory,
as well as the memory used by processes. The processes, however, must not
have access to the operating system’s private memory. Thus, switching
operating modes must also entail a change in memory protection. How this
is done varies between architectures.

Some architectures require the operating system to use one address space
for its own access, as well as one for each process. For example, if a special
register points at the base of the page table, this register may need to be
changed every time the operating mode changes. The page table for the
operating system can provide access to pages that are unavailable to any of
the processes.

Many other architectures allow each page table entry to contain two dif-
ferent protection settings, one for each operating mode. For example, a page
can be marked as readable, writable, and executable when in kernel mode,
but totally inaccessible when in user mode. In this case, the page table need
not be changed when switching operating modes. If the kernel uses the same
page table as the user-mode process, then the range of addresses occupied
by the kernel will be off limits to the process. The IA-32 architecture fits
this pattern. For example, the Linux operating system on the IA-32 allows
each user-mode process to access up to 3 GiB of its 4-GiB address space,
while reserving 1 GiB for access by the kernel only.

In this latter sort of architecture, the address space doesn’t change when
switching from a user process to a simple operating system routine and back
to the same user process. However, the operating system may still need to
switch address spaces before returning to user mode if its scheduler decides
the time has come to run a thread belonging to a different user-mode process.
Whether this change of address spaces is necessary depends on the overall
system design: one address space per process or a single shared address
space. Sections 7.3.2 and 7.3.3 address these alternatives.

Having described the distinction between kernel mode and user mode, I
am also now in a position to explain the three ways in which threads can
be implemented using those modes. Figure 7.8 shows the three options in
schematic form; I explain them in the following paragraphs.

As described in Chapters 2 and 6, operating system kernels use threads
for their own internal purposes, such as zeroing out unused page frames
or flushing dirty pages out to disk. In these circumstances, the threads
may execute entirely within kernel mode; they are called kernel threads.
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User mode

Kernel mode

(a) (b) (c)

Figure 7.8: Three relationships are possible between threads, the scheduling
and dispatching code that switches threads, and the operating modes: (a)
the threads can be part of the kernel, along with the kernel’s scheduler and
dispatcher; (b) the threads can run mostly in user mode, but be scheduled
and dispatched in the kernel; (c) the threads can run in user mode along
with a user-level scheduler and dispatcher.

As shown in Figure 7.8(a), the processor can run a first kernel thread, the
kernel’s scheduling and thread dispatching code, and then a second kernel
thread, all without leaving kernel mode.

An operating system kernel’s scheduler may also choose to run a thread
that is part of a user-mode process. As shown in Figure 7.8(b), switching
between user threads requires two mode switches, even if the threads are in
the same process. First, a switch from user mode to kernel mode is needed
when moving from one user thread to the scheduler. Second, a switch from
kernel mode back to user mode is needed when the kernel dispatches the
next user thread. Nomenclature for these kernel-supported user threads is
not standardized; the most common term seems to be native threads, or
simply threads when the context is clear.

To avoid mode-switching costs when switching threads within a process,
some middleware systems provide scheduling and dispatching mechanisms
analogous to the kernel’s but residing within the user-level code, that is,
the code running in user mode. As shown in Figure 7.8(c), this allows the
outgoing thread, the scheduler, and the incoming thread to all execute in
user mode with no mode switch—provided the two threads are in the same
process. These threads are commonly called user-level threads, but I prefer
Microsoft’s name, fibers. This name makes clear that I am not talking about
Figure 7.8(b)’s threads, which also contain user-level code. Moreover, the
name provides a nice metaphor, suggesting that multiple fibers exist within
one native, kernel-supported thread. As shown in Figure 7.9, the kernel’s
scheduler divides the processor between threads, but within each thread,
there can also be a user-level scheduler switching between fibers.
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User mode

Kernel mode

Figure 7.9: Multiple user-level threads can be enclosed in each kernel-
supported native thread. The kernel’s scheduler switches between the en-
closing native threads. Within each of them, user-level dispatching also
occurs. This creates what Microsoft calls fibers within the threads.

Although you needed to understand the two processor modes in order
to appreciate the preceding three kinds of threads, you should keep in mind
that I introduced you to the processor modes for a different reason. Namely,
the processor modes provide the foundation for the protection of processes.
For example, the processor modes allow each process to be confined within
its own address space in a multiple address space system.

7.3.2 The Mainstream: Multiple Address Space Systems

Most operating systems (including Linux, Microsoft Windows, and Mac
OS X) provide memory protection by giving each process its own virtual
memory address space. Unless the application programmer makes special
arrangements, these address spaces are completely disjoint. However, the
programmer can explicitly ask the operating system to map the same file,
or the same block of shared memory space, into several processes’ address
spaces.

The multiple address space design is particularly appropriate on archi-
tectures with comparatively narrow addresses. For example, a 32-bit address
can reference only a 4-GiB address space. If a 32-bit system is going to run
several processes, each of which has a couple gigabytes of data to access,
the only way to obtain enough space is by using multiple address spaces.
This motivation for multiple address spaces goes away (for present practical
purposes) on 64-bit systems.

Regardless of address size, the multiple address space design confers
other advantages, which I mentioned in Section 6.1, where I provided a ra-
tionale for virtual memory. Each process can allocate virtual addresses inde-
pendently from the others. This means that a compiler can build addresses
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into a program, even though several concurrent processes may be running
the same program; each will be able to use the pre-determined addresses for
its own copy of data. Moreover, procedures to dynamically allocate memory
(for example, when creating objects) can work independently in the differ-
ent processes. Even shared memory can independently appear at the most
convenient virtual address for each process. For example, several processes
running the same program can all consistently use one virtual address for
their input channels, and all consistently use a second virtual address for
their output channels, even if one process’s output channel is another’s input
channel.

However, independent address spaces can also confer disadvantages. I
briefly mentioned one in Section 6.2.2: inconsistent virtual addresses for
shared memory means pointer-based structures can’t be shared. At the
level of abstraction provided by programming languages, objects are linked
together by pointers (as in C++) or references (as in Java). At the lower
level of abstraction executed by the computer, these language constructs
generally are represented by virtual addresses; one object contains the vir-
tual address of another. With separate address spaces, virtual addresses are
meaningful only within one process. Thus, while a shared memory region
can contain a simple data structure, such as a contiguous array of charac-
ters, it cannot contain anything complex enough to need pointers, such as
a linked list or tree. Strictly speaking, pointers can be used as long as they
are represented other than as virtual addresses (which most compilers won’t
do) or the processes take care to map the shared memory into the same
locations (which is difficult to square with their independent allocation of
other memory). Pointer-based data structures that span multiple shared
memory regions are even more problematic.

You can see one important variant of the pointer problem if you rec-
ognize that memory holds code as well as data. Instructions sometimes
include virtual addresses: either the virtual address of another instruction
to jump to or the virtual address of a data location to load or store. The
virtual addresses included within instructions suffer the same fate as point-
ers: either they need to be kept local to one process or the processes need to
coordinate their assignments of virtual addresses. However, if the processes
need to coordinate address allocation, you have already traded away one of
the advantages of separate address spaces. For example, consider a DLL
that is mapped into several processes’ address spaces. It would be natural if
instructions within the DLL could include the addresses of other locations
within the same DLL. However, that is not possible unless the DLL occupies
the same range of virtual addresses within each process.
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Another disadvantage to separate address spaces is that addresses cannot
be used as the ultimate system-wide name for objects. For example, sup-
pose two processes are communicating, and one of them wants to suggest to
the other that it map some new object into its address space. The sending
process can’t specify the object in question by address (even though it may
have an address for the object), because the receiving process doesn’t yet
have an address for the object. Instead, the communication needs to be in
terms of some other, address-neutral nomenclature, such as filenames. Sim-
ilarly, virtual addresses can’t play any role in persistent storage of objects,
because their validity is confined to a single executing process.

None of these disadvantages has been sufficiently severe as to displace
multiple address space systems from the mainstream. However, the dis-
advantages have been sufficient to cause system designers to explore the
alternative, which is for all processes to share a single address space. Single
address space systems have even been commercially deployed—in one case
with considerable success. Therefore, I will move next to a consideration of
such systems.

7.3.3 An Alternative: Single Address Space Systems

There is no need to consider in detail the advantages and disadvantages
of a single address space; they are the exact opposite of those for multiple
address spaces. Processes can share and store addresses freely but need
to coordinate on their allocation. Instead of rehearsing the case for and
against a single address space system, I will consider how one could still
protect memory with such a system.

Beyond questions of security, memory protection is critical because pro-
grams contain bugs. Debugging is challenging enough even if the result of a
bug in one process always manifests itself as a symptom in that same pro-
cess. However, without memory protection, a bug in one process can cause
a symptom in another process, because the bug can take the form of writ-
ing into memory being used by the other process. This situation, in which
a process’s data seems to spontaneously change as a result of a bug in an
unrelated process, is a debugging nightmare. Thus, even in a single address
space system, processes must have varying access rights to memory. The
goal in moving to a single address space is simply to decouple the question
of accessibility from that of addressability. The latter concerns whether a
memory location can be named, whereas the former concerns whether the
location can be read and written.

In a multiple address space system, the processes are protected from one
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another through addressability; each process will typically have no ability
to name the memory locations being used by the others. Even when two
address spaces share a particular region of memory, the accessibility of that
region is seldom modulated independently for the individual processes. For
example, it would be rare for a shared-memory region to be marked read-
only for one process but not another. By contrast, the processes in a single
address space system are not separated at all by addressability; they can all
name any memory location. Instead, the processes differ with regard to the
memory regions they have permission to read and write.

Intel’s Itanium architecture contains a representative mechanism for sup-
porting protection in a shared address space. Each page table entry (in a
hashed page table) contains a protection key, which is a number. The idea
is that all pages that are to be protected in the same way have the same key.
In particular, if a data structure spans several pages, all the pages would
have the same key. Giving a process the right to read pages with that key
would give that process the right to read the whole structure. A collection
of at least sixteen special registers holds protection keys possessed by the
currently executing process. Every memory access is checked: does the pro-
cess have a key that matches the accessed page? If not, the hardware traps
to an operating system handler, much like for a page fault.

Processes may need access to more independently protected memory
regions than the number of protection key registers. Therefore, the operating
system will normally use those registers as only a cache of recently accessed
structures’ keys, much like a TLB. When a protection key miss fault occurs,
the operating system will not immediately assume the access was illegal.
Instead, it will first search a comprehensive list of the process’s keys. If the
missing key is found there, the operating system will load it into one of the
key registers and resume execution. Only if the process truly doesn’t have
the key does the operating system cope with the illegal access, such as by
terminating the process.

Each protection key register contains not only a key number, but also
a set of access control bits for read, write, and execute permissions. Recall
that each page table entry also has access control bits. A process can access a
page only if it has the appropriate permission in its key register and the page
table entry also allows the access. Thus, the page table entry can specify the
maximum access for any process, whereas the protection key registers can
provide modulated access for individual processes. For example, a process
may only be able to read a group of pages that some other process can write.

Although single address space systems remain outside the mainstream, at
least one has proved to be commercially viable. In the 1970s, IBM chose the
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single address space design for an innovative product line, the System/38,
aimed at small businesses. In 1988, they issued a revised version of the
same basic design, the AS/400, and in 2000 they renamed the AS/400 the
iSeries. Whatever it may be called, the design has proved successful; as of
June 2005, IBM reports that more than 400,000 iSeries servers are installed
worldwide.

7.4 Representing Access Rights

In Sections 7.4.2 and 7.4.3, I will present the two principal approaches to
representing access rights. First, though, I will use Section 7.4.1 to clarify
the vocabulary used for discussing protection systems.

7.4.1 Fundamentals of Access Rights

A protection system controls access to objects by subjects. An object is
whatever kind of entity needs protection: a region of memory, a file, a
service that translates names to addresses, or anything else. A subject is
the active entity attempting to make use of an object; I will generally assume
that it is a process, because each thread within the process has the same
access rights. Each kind of object has its own repertory of operations that
a subject can perform on it, if the protection system permits: for example,
a memory region may have read and write operations, whereas a naming
service may have lookup, insert, and modify operations. An access right is
a permission for a subject to invoke an operation on an object. Each subject
is also an object, because operations can be performed on subjects, such as
the operation of terminating a process.

Although protection mechanisms normally operate in terms of access
rights given to subjects (that is, processes within the computer), those access
rights ultimately should reflect the external authority of human users. To
capture this notion, I will say that each subject is acting on behalf of a
principal. For most purposes, you can equate the word “principal” with
“user.”

I use the technical word “principal” because occasionally the principal
will be an organization rather than an individual, and because a server pro-
cess may treat client processes as principals, for its purposes, even though
the client processes are really only intermediaries, themselves operated by
users. The distinguishing feature of a principal is that its rights are com-
pletely a question of policy, not of technical mechanism. If organizational
policy directs a web server to grant some rights to particular client web
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browsers (for example, those at on-campus addresses), then it is treating
those browsers as principals. If, on the other hand, the organizational pol-
icy directs the web server to attempt to identify the human sitting at the
web browser and grant access rights on that basis, then the human is the
principal and the web browser is just an intermediary subject.

As my example of a web server indicates, a subject may operate on
behalf of one principal at one time and a different principal at a different
time. Under one scenario, the web server is operating on behalf of on-campus
browsers at some times and on behalf of off-campus browsers at other times.
Under the other scenario, the web server is operating on behalf of different
humans at different times. This leads to an interesting question: what access
rights should the web server have?

One common design is for the operating system’s protection mechanism
to give the subject the union of all the access rights it needs for all the
principals. The subject then has the responsibility to enforce more spe-
cific protections. This is standard practice with web servers. Consider for
example a web server that is running software that lets users read their
email through web browsers. The operating system will typically let the
mail software running on the server access all users’ stored mail all the time,
regardless of who is currently reading mail. It is up to the server-side mail
program to make sure it only lets you read your own mail, rather than
someone else’s.

In the web context, a substantial redesign would typically be necessary
if the operating system were to protect principals from each other, rather
than leaving that job to the application software, such as the mail program.
This is because the operating system is usually completely unaware of the
principals. Google uses the Linux operating system on their servers, but it
seems completely implausible that they would create separate Linux user
identities for each user of Gmail. Thus, there is no way that the Gmail
system could store your mail in a file marked at the operating system level
as owned by you and only readable by you.

Suppose, though, we move away from the web context to a situation
where an operating system supports multiple users and runs some server
software that operates at different times on behalf of different users. In
many organizations, file storage servers and print servers fit this pattern. In
this context, the server software (a subject) is again running on behalf of
several users (the principals) and is accessing files (objects) that should be
constrained by principal-specific access controls. If the server software runs
all the time with enough access rights to be able to serve all users, then it
will need to be very carefully written and checked to make sure it accurately
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enforces the desired protections. For example, the print server needs to be
checked to make sure one user can’t print another user’s files. This wouldn’t
just follow as an automatic consequence of the operating system’s usual
enforcement of access restrictions.

A better design would be for the operating system’s protection mecha-
nism to allow the server to switch from one set of access rights to another.
In this case, the subject is said to move from one protection domain to an-
other; a protection domain is simply the set of access rights possessed by a
subject.

Some subjects may also need to switch domains in order to obtain extra
access rights that would not normally be available to the principal. I have
already mentioned one form this can take. In systems such as Linux and
UNIX, when a process executes a program that has the setuid bit set, the
process switches protection domains by taking on the identity of the program
file’s owner, with all the corresponding access rights.

At any one time, you can look at one subject (call it S) and one object
(call it O) and say that S is allowed to perform some particular set of
operations on O. To generalize this to the whole system, one can picture
the instantaneous state of a protection system as an access matrix, with one
row for each subject and one column for each object. The entry in row S
and column O of the matrix is the set of operations that S can perform
on O, as shown in Figure 7.10. Any attempt by a subject to perform an
operation can be checked for legality by reference to the matrix.

The access matrix in most systems is very dynamic; it gains and loses
columns and rows, and the operations listed in individual cells of the matrix
change over time. For example, forking off a new process would add a row
and a column to the matrix, because the new process is both a subject and
an object. If the process executes a setuid program, many of the entries in
that process’s row of the matrix would change, because the new user identity
conveys different access rights to many objects.

Some changes to the access matrix also reflect explicit protection opera-
tions, such as making a formerly private file readable by everyone or passing
an access right held by one process to another process. These protection
operations can themselves be regulated by access rights listed in the access
matrix, as illustrated in Figure 7.11. Changing a file’s accessibility would be
an operation on that file, contained in some entries within that file’s column
of the matrix. Normally, this operation would not appear in every entry of
the column, because only some processes should be able to change the file’s
accessibility. If only processes P1 and P2 have the right to change file F ’s
accessibility, then the corresponding change-accessibility access right would
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Subjects



Objects︷ ︸︸ ︷
· · · O · · ·

...

S
operations S
can perform

on O
...

Figure 7.10: An access matrix has one row for each subject, one column for
each object, and entries showing which operations each subject can perform
on each object.

F P1 P2 · · ·
P1 change accessibility transfer rights

P2 change accessibility
...

Figure 7.11: An access matrix can contain rights that control changes to
the matrix itself. In this example, the processes P1 and P2 have the right
to change the accessibility of file F , that is, to change entries in F ’s column
of the access matrix. Process P1 also has the right to transfer rights to
process P2, that is, to copy any access right from the P1 row of the matrix
to the corresponding entry in the P2 row. Notice that the representation of
the right to transfer rights relies upon the fact that each subject is also an
object.
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show up in the matrix in two spots, exactly where rows P1 and P2 intersect
with column F . Similarly, if process P1 can pass an access right along to
process P2, there might be an entry in row P1 and column P2 conferring
that transfer-rights permission. (Recall that subjects, such as P2, are also
objects, and hence have columns as well as rows.)

In order to fit common protection mechanisms into the access matrix
model, some slight contortions are necessary. For example, many mech-
anisms include access rights granted to principals (users), independent of
whether they are running any computations at the time. Thus, it becomes
necessary to add the principals themselves as subjects, in addition to their
processes. Access rights can then go in both the row for the principal and
the rows (if any) for the processes running on behalf of the principal. When
a principal starts running a new process, the protection system can initialize
the newly added row with rights taken from the principal’s row. Alterna-
tively, the process can just have rights to a special operation on the principal
object, allowing it to indirectly use the principal’s rights. Figure 7.12 illus-
trates both alternatives.

The access matrix model is very general: protections are established by
sets of operations contained in an access matrix, which include operations
to change the matrix itself. This generality suggests that one could con-
struct an elegant mathematical theory of protection systems, which would
work independently from the specifics of concrete systems. Unfortunately,
the model’s generality itself limits the results such a mathematical theory
can provide. Harrison, Ruzzo, and Ullman showed that under very ba-
sic assumptions, the general access matrix model can simulate a Turing
machine, with the matrix playing the role of the Turing machine’s tape.
Fundamental questions, such as whether a particular access right leaks out,
turn out to be equivalent to the halting problem and, as such, are undecid-
able. Even restricting the problems enough to render them decidable may
not make them practically solvable; for example, some fall into the class of
PSPACE-complete problems. As explained in the end-of-chapter notes, this
classification from computational complexity theory contains only very hard
problems for which efficient solution algorithms are unlikely to exist. Thus,
concrete protection systems need to be analyzed individually, rather than
by reference to general results about the access matrix model.

Access matrices can represent very different security policies, depending
on their contents. If you focus on the operations that allow modification
of the matrix, you can distinguish two broad categories of policies: Discre-
tionary Access Control (DAC ) and Mandatory Access Control (MAC ).

Most mainstream systems (such as Linux, Microsoft Windows, and Mac
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(a) F1 F2 JDoe P1 · · ·
JDoe read write

P1 read write
...

(b) F1 F2 JDoe P1 · · ·
JDoe read write

P1 use the rights of
...

Figure 7.12: If access rights are initially granted to a principal, such as
JDoe, then there are two options for how those rights can be conveyed to
a process, such as P1, operating on behalf of that principal. In option (a),
when the process P1 is created, all of JDoe’s rights are copied to P1’s row
of the matrix; in this example, the rights are to read file F1 and write file
F2. In option (b), P1 is given just a special right to indirectly use the rights
of JDoe.

OS X) are usually configured to use DAC, so you are probably familiar with
that class of policies, even if you are not familiar with the name. In a DAC
system, each object is considered to be owned by a principal; when one of
your processes creates an object (such as a file), you become its owner. The
owner has broad rights to control the object’s accessibility. As the owner
of a file, you can choose whether to let other users read or write the file.
In some DAC systems, you can go even further than giving away arbitrary
access rights to your files; you can give away transferable rights, allowing
other users to further propagate access to your files.

By contrast, an object’s creator in a MAC system does not obtain control
over access rights to the object. Instead, the access rights are determined by
an explicit security policy and can be changed only within the parameters
of that policy, often only by a designated security officer, rather than by
an ordinary user. For example, consider a MAC system that enforces the
military policy with regard to classified documents. If you are using such
a system and have created a classified document, the fact that you are the
creator does not give you any special control. You cannot choose to give
access to users who are not cleared for the document’s classification level.
The only way the document can be made readable to those users is by
declassifying it, an operation that only security officers can perform.
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I will postpone further comparison between DAC and MAC systems until
Section 7.6. Even there, I will include only the basics, leaving more detailed
treatment for Chapter 11. For now, I will explain the two techniques that
are used to keep track of access rights, independent of what sort of policy
those rights are enforcing. The first technique is the use of capabilities,
which I explain in Section 7.4.2. The second technique is the use of access
control lists and credentials, which I explain in Section 7.4.3.

7.4.2 Capabilities

A capability is an indirect reference to an object, much like a pointer. The
key distinction is that a capability includes not only the information needed
to locate the object, but also a set of access rights. For example, two pro-
cesses could possess capabilities for the same file, but one of them might
have a read-only capability to the file, whereas the other might have a ca-
pability that permitted both reading and writing. A process that possesses
capabilities has a tangible representation of entries from its row of the access
matrix.

Nomenclature, as always, is not standardized. Although the word “capa-
bility” dates back to the mid-1960s and is popular in the academic literature,
other names are used by today’s mainstream operating systems. Microsoft
Windows refers to capabilities as handles, and POSIX systems such as Linux
and UNIX refer to them as descriptors. Continuing with the example of files,
a Windows process could have a file handle that permitted reading only, and
a Linux process could have a file descriptor that permitted reading only. (As
you will see shortly, the handles and descriptors are actually even more in-
direct than capabilities; however, for everyday purposes, programmers can
and do think about them in the same way as capabilities.)

To further confuse matters, the designers of Linux and UNIX systems
have recently started using the word “capability” in a somewhat different
sense. A capability in this new sense of the word confers rights, but does
not refer to a specific object. For example, a process might hold a capability
that allows it to access any file, or one that allows it to kill any process.
To distinguish the two senses, these new object-independent capabilities are
sometimes called “POSIX capabilities,” even though the draft standard that
would have made them part of POSIX was in fact abandoned. I will not use
the word “capability” in this sense.

A process can store its capabilities in either of two ways, depending on
the design of the operating system. Most systems give each process a special
storage area just for capabilities, independent of the normal virtual memory
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address space of the process. Microsoft Windows and the POSIX systems
take this approach. The alternative approach, taken by the iSeries, is for
a process’s capabilities to be stored in normal memory, just like any other
data.

A separate storage area for capabilities is called a C-list, which is short
for capability list. You will also frequently see C-lists called by system-
specific names, such as handle tables in Microsoft Windows and descriptor
tables in POSIX systems. Systems with C-lists provide special system calls
to put entries into the C-list or otherwise operate on it, because normal load
and store operations are not applicable. Entries in the C-list are referred to
by their integer positions within the list. For example, an operation to read
from a file takes an integer argument, which must be the position within the
C-list of a file capability that includes the read permission. An operation to
open a file for reading adds an entry to the C-list and returns the integer
index of that entry.

It is these integer indices into the C-list that serve as handles in Microsoft
Windows or as descriptors in POSIX. The integers can be stored anywhere
in the process’s memory; however, they do not have any significance outside
the process. From the vantage point of another process, the integer would
just be a useless numerical value, not a means of accessing a capability.
This means that the integer cannot be directly used to pass the capability
through interprocess communication or retain it in persistent storage. In
order to pass a capability from one process to another, you need to use a
special system call. The sending process specifies the capability to send by
its integer index, and the receiving process is notified of its newly acquired
capability as an integer index. However, the receiving process will in general
be given a different integer than the sending process sent, because the two
processes each have their own C-lists. In POSIX systems, descriptors are
sent using sendmsg and received using recvmsg. For example, this would
allow a process that opened a file to pass the open file descriptor to a second
process, which could then read the file.

The capability model is incomplete as an explanation of POSIX file de-
scriptors. As I will explain in Chapter 8, to fully understand file descriptors,
you need to consider not only their capability-like properties, but also how
the operating system keeps track of other information associated with each
open file, especially the current position within the file for reading or writ-
ing. For the present chapter, however, I prefer to continue with the topic of
capabilities, explaining another option for how they can be stored.

Instead of segregating the capabilities into a C-list for each process and
forcing each process to use positions within its C-list as surrogates for the
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capabilities, an operating system can give the processes direct possession of
the capabilities. In particular, IBM chose this approach for the System/38
and carried it forward into the AS/400 and iSeries. I call these nonsegre-
gated capabilities addressable capabilities, because they are stored within
the address space.

Capabilities that are addressable values are considerably more flexible
than the C-list variety. By storing addressable capabilities within objects,
software can use them to link several independently protected objects to-
gether into a larger structure, just as pointers would be used to make a
more traditional structure of linked objects. This flexibility is particularly
valuable in the iSeries, because (as I mentioned in Section 7.3.3) it is a single
address space system.

The major difficulty with addressable capabilities is how to prevent an
application program from forging them. (Recall that in the C-list approach,
the operating system stores capabilities in memory inaccessible to the pro-
cess, so forgery is a nonissue.) Normally the capabilities should come from
trusted system calls. However, if the capabilities are stored in ordinary
memory locations, what is to stop a program from writing the appropriate
set of bits to look like a capability and then using that forged capability to
perform a protected operation?

Three basic approaches exist to prevent capability forgery. The approach
used by the iSeries relies on special hardware features. Each memory word
is supplemented by a tag bit indicating whether the word contains part of
a capability. All normal instructions set the bit to 0, whereas capability
operations set it to 1. Only words with their tag bits set to 1 can be used
as a capability.

An alternative approach uses cryptographic techniques to achieve a high
probability that forgeries will be detected, without needing special hardware.
If each capability is represented by a large string of essentially random bits,
and the operating system can check whether a given string of bits is valid,
the only way to forge a capability would be by an incredibly lucky guess.

The third approach to preventing capability forgery forces all user pro-
grams to be processed by a trusted translator that enforces a strong type
system. The type system prevents capability forgery the same way as any
other type error. Interestingly, the iSeries does put all user programs through
a trusted translator; apparently its type system is simply too weak to func-
tion without special tagging hardware. You will see an example of a stronger
type system providing protection in Section 7.5.1, where I discuss the use of
the Java Virtual Machine to provide protection at a finer granularity than
operating system processes.
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With the iSeries’s combination of a single address space and addressable
capabilities, determining the set of all capabilities available to a given process
is not an easy job. They are not all in one place, unlike with a C-list. Nor
can one just scan the process’s address space looking for capabilities, because
the process does not have an individual address space. Instead, it has access
to those portions of the shared address space that are reachable through its
capabilities. That is, each capability the process has available leads to an
object, which can in turn contain more capabilities, leading to more objects.
Some capabilities might lead back to already discovered objects. Thus, to
find all the capabilities would require a general directed graph traversal
algorithm, similar to what is needed for a garbage collector.

Regardless of how easy- or hard-to-find a process’s capabilities are, one
can recognize this set of capabilities as being the link to the abstract model
of protection systems, which is the access matrix. Each process’s set of
capabilities corresponds with one row of the access matrix, because it records
one subject’s rights to objects. For a hypothetical system that provided
protection purely through capabilities, the correspondence between access
matrix rows and capability sets would be exact. The correspondence is less
direct in real systems, which blend capability-based protection with access
control lists, a topic I consider in Section 7.4.3. Because of this hybridization
of protection representations, a process’s set of capabilities holds only a
portion of the contents of an access matrix row.

In all common operating systems, capabilities can be selectively granted
but not selectively revoked. As an example of the selective granting of
capabilities, an operating system will not allow just any process to open
up a file of private information and obtain the corresponding capability.
(You will see in Section 7.4.3 how the system achieves this.) However, once
a process has the capability—whether by successfully opening the file or
by being passed the capability by another, more privileged, process—it can
continue to operate on the file. The file’s owner cannot revoke the capability,
short of destroying the file itself. (In POSIX systems, the owner can’t even
destroy the open file, but just its contents and any names it has.)

Several systems (such as Multics and various research systems) have
supported selective revocation, in which some capabilities to an object can
be revoked, while others remain valid. One approach is to keep track of the
location of all copies of a capability; they can be invalidated by overwriting
them. Another approach is to check whether a capability is still valid each
time it is used to request an operation. For example, if capabilities are large
random strings of bits, each object can contain a list of the valid capabilities.

Irrevocable capabilities are difficult to reconcile with system security.
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For this reason, the architects of the AS/400 made a change (relative to the
original design taken from System/38) and eliminated all use of capabilities
except within the operating system itself.

The POSIX systems take a more pragmatic approach to the problem of
irrevocable capabilities. These systems use capabilities only for short-term
storage of access rights while a process is running. As such, any excess access
rights caused by the irrevocable capabilities will go away when the system is
rebooted, in the worst case. Long-term storage of access rights is provided
by access control lists, which are the next topic of this chapter.

7.4.3 Access Control Lists and Credentials

As you have seen, a capability list collects together the access rights held by a
process. This row-wise slice of the access matrix is natural when considering
the instantaneous rights of a process as it executes. However, it is much less
natural when setting down (or auditing) longer-term policy regarding access
rights. For those purposes, most systems use a mechanism based on user
credentials and access control lists.

An access control list (ACL) is essentially a column-wise slice of the
access matrix, listing for one object what subjects may access the object,
and in what manner. However, rather than listing the subjects at the fine
granularity of individual processes, an ACL specifies rights for users (that
is, principals) or for named groups of users.

I can show you an example of an ACL on a Microsoft Windows system by
pulling up the Properties dialog box for a folder and selecting the Security
tab on that dialog box. The visual form of the dialog boxes is dependent on
the particular version of Windows, but the principles apply to all modern
versions. As shown in Figure 7.13, this folder named “max” has an ACL
with three entries: two for groups of users (Administrators and SYSTEM)
and one for an individual user (myself). In the bottom part of the dialog box,
you can see that any process running with a credential from the Administra-
tors group is allowed Full Control over this folder. The permissions (such as
Full Control) listed here are actually abbreviations for sets of permissions;
to see the individual permissions, one needs to click the Advanced button
(which gives the dialog box in Figure 7.14) and then the View/Edit button,
producing the result shown in Figure 7.15. As you can see, Full Control
actually is a set of thirteen different permissions. Some of these permis-
sions (those with slashes in their names) have different interpretations when
applied to folders than when applied to files.

One subtlety in Figures 7.13 and 7.15 concerns the presence of the Deny
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Figure 7.13: This is the initial dialog box summarizing a Microsoft Windows
ACL, found in the Security tab of a Properties dialog box.

column of check boxes; this column is to the right of the Allow column. You
might suspect that this is redundant, with the Deny box checked whenever
the Allow box is unchecked. Although that is a reasonable suspicion, it is
wrong. You can see in Figure 7.16 that the Users group has been neither
allowed nor denied the ability to create files in the Program Files folder. To
understand ACLs, you need to understand the difference between denying
a permission and not allowing it.

As you have seen, an ACL entry can allow a permission, deny it, or
neither. (Although the graphical user interface looks as though an entry
could both allow and deny the same permission, in fact this is not possi-
ble. Checking one box unchecks the other.) Keep in mind that your rights
as a user derive both from ACL entries specifically for your user identity
and from other ACL entries for groups to which you belong. In combining
together these various ACL entries, having three options makes sense for
the same reason as in parliamentary procedure one can vote yes, no, or ab-
stain. An ACL entry that abstains (neither allows nor denies a permission)
is permitting the other ACL entries to decide the question. In Figure 7.16,
simply being a member of the Users group is not determinative one way or
the other with regard to creating files. A member of the Users group may be
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Figure 7.14: Clicking the Advanced button on the dialog box shown in Fig-
ure 7.13 produces this dialog box, which in turn gives you the opportunity to
click the View/Edit button to obtain the detailed view shown in Figure 7.15.
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Figure 7.15: This detailed view of a Microsoft Windows ACL entry allows
you to see that Full Control really is a summary name for thirteen different
permissions.
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Figure 7.16: In the Microsoft Windows ACL entry shown in this detailed
view, some permissions are neither allowed nor denied. In this circumstance,
other ACL entries are allowed to control access.
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able to create files in this folder, depending on what the other ACL entries
say and depending on what other groups the user belongs to. This is the
meaning of having neither the Allow box nor the Deny box checked. If all
applicable ACL entries abstain, then access is denied.

What if one ACL entry that applies to a user specifies that a permission
should be allowed, while another ACL entry that also applies to the same
user specifies that the permission should be denied? In this case, a key
difference arises between ACLs and parliamentary procedure: the majority
of the non-abstaining votes does not win with ACLs. Instead, a single vote to
deny access will overrule any number of votes to allow access, much like the
veto power possessed by permanent members of the United Nations Security
Council. This allows an ACL to include exceptions; for example, all members
of some group can be given access (without listing them individually), except
one specific user who is denied access. Figure 7.17 summarizes the rule for
combining ACL entries.

Within the Windows kernel, ACL entries are actually combined accord-
ing to a different rule. If one ACL entry that applies to a user specifies that
a permission should be allowed, while another ACL entry that also applies
to the same user specifies that the permission should be denied, the kernel
obeys whichever ACL entry is listed first. However, the API procedures
that are generally used to maintain ACLs take care that all Deny entries
precede any Allow entries. This effectively results in the rule shown in Fig-
ure 7.17, that a Deny entry always overrides an Allow entry. In particular,
the graphical user interface shown in the preceding figures makes use of the
API that gives precedence to Deny entries. In Exercise 7.8, you can analyze
the relative merits of the two rules for combining ACL entries.

Although details vary from operating system to operating system, the
Microsoft Windows version of ACLs is typical of all systems with full-fledged

Allow Deny Neither

Allow Allow Deny Allow

Deny Deny Deny Deny

Neither Allow Deny Neither

Figure 7.17: This table shows the rule for combining two Microsoft Windows
ACL entries. The same rule is used repeatedly to combine any number of
ACL entries. However, if the final result of combining all applicable entries
is Neither, it is treated as Deny. (As the text explains, a different rule is
used at a lower level. This figure explains the usual interface.)
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ACLs, dating back at least to Multics in the 1960s. Rather than looking
at any other examples with full ACLs, I will consider a popular alternative,
which is to use a highly restricted form of ACL. In particular, I will explain
the file permissions portion of the POSIX specification, implemented by
Linux, Mac OS X, and other versions of UNIX. (Some POSIX systems also
offer the option of full ACLs; I will focus here on the traditional, required
permission system.)

In common with Microsoft Windows, POSIX has a concept of user
groups. Each file is owned by a particular user (usually its creator) and
also has an owning group. The ACL for any file always has exactly three
entries:

• One entry specifies the permissions for the user who owns the file.

• The second entry specifies the permissions for all users who are mem-
bers of the owning group, except for the owning user.

• The third entry specifies the permissions for all other users, who are
neither the owner nor members of the owning group.

Note that unlike Windows, where several ACL entries may contribute to
a single user’s permissions, only one of these three will apply to any user.
Thus, each permission can be treated in a binary fashion (granted or not
granted), without need for the three-way distinction of allow/deny/neither.
(Because of the way the three ACL entries are defined, you can perform
odd stunts like giving everyone but yourself permission to access one of your
files.)

Each of the three entries in a POSIX ACL can specify only three per-
missions: read, write, and “execute,” which as you’ll see can also mean
“traverse directory.” These three permissions are abbreviated by the single
letters r, w, and x. A file has a total of nine permission bits: r, w, and x

for the owner; r, w, and x for the rest of the owning group; and r, w, and
x for everyone else. You can see these nine bits in the output from the ls

directory listing program, when given the -l option (the letter l indicates
you want a long-format listing, with lots of information). For example, in
listing my home directory, I see a line that starts with

drwxr-x--- 4 max mc27fac

followed by the size, date, time, and name of the directory entry. The letter
d at the beginning indicates that this is an entry for a subdirectory. The
next nine characters are the permissions; I have full rwx permission, the
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other members of group mc27fac have only r and x (but not w), and other
users have no permissions at all.

For an ordinary file, the rwx permissions are relatively self-explanatory.
However, many people are confused as to what they mean for directories.
For a directory:

• The r permission allows its possessor to find out what names are listed
in the directory. This permission is neither necessary nor sufficient to
get access to one of those named files. With only the r permission
on one of your directories, another user would just be able to observe
your taste in filenames.

• The w permission allows its possessor to create, delete, or rename files
in the directory. Note, in particular, that a user who doesn’t have
permission to write into one of your files may still have permission to
delete the file and create a new one with the same name.

• The x permission allows its possessor to use a filename in the directory
as part of getting access to a file, subject to that file’s own permissions.
The x permission allows a user to traverse a directory, that is, to look
up a given name in the directory and determine what it is a name for.
Even without the r permission, a user can access one of the files in the
directory if the user already knows (or can guess) its name, has the
appropriate permission to the file itself, and has the x permission.

As a simple rule, you should always use the r and x permissions together
on directories, unless you really know what you are doing. Giving x permis-
sion without r can be very frustrating, because it will break many modern
programs with graphical user interfaces. These interfaces present users with
a list of files to pick from, rather than making the user type the filename in.
The only value of x without r is for security, but a security design that relies
on other users not knowing your obscure choices of filenames is probably not
very wise. On the other hand, x without r is at least more useful than r

without x. You would need to think quite creatively to find value in letting
people see your filenames but not make any use of them. (In Exercise 7.10,
you have the opportunity to be that creative.) For most normal purposes,
directory permissions should be rwx (for yourself, and sometimes for a group
you really trust a lot), r-x (for others you want to use the directory), or
--- (for others you want to keep out).

As described in the preceding bulleted list, having w permission on a
directory is quite powerful, in that it allows you to delete and replace an
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existing file within that directory, even if you couldn’t overwrite the file.
However, this power can be kept in check. Each directory has a bit, alongside
the nine rwx permission bits constituting the ACL, which can be used to
limit the power of the w permission. If this so-called sticky bit is set, then
a file may be deleted from the directory only by the owner of the file, the
owner of the directory, or the system administrator. The same limitation
applies to renaming files.

Access control lists, of either the full variety or the simplified owner-
group-other kind, are generally used in conjunction with capabilities. When
a POSIX process wants to read or write a file, for example, it starts by
using the open procedure to translate the filename into a file descriptor,
which refers to a capability.

The open procedure takes as arguments both the filename (a string) and
an integer encoding a set of flags. That set of flags contains information
as to whether the process intends to read the file, write the file, or both.
For example, open("alpha/beta", O_RDONLY) would attempt to obtain a
read-only capability for the file named beta in the directory named alpha

in the current directory.
The open procedure uses the process’s user and group credentials to

check whether the process has the necessary permissions: x permission on
the current directory and the subdirectory named alpha, and r permission
on the file named beta within alpha. If the process has executed a se-
tuid program, these permission checks are done using the effective user ID,
adopted from the program’s ownership information. Similarly, the permis-
sion checks take the effective group ID from the program’s owning group if
an analogous set group ID (setgid) feature is used. Assuming the permis-
sions are granted, the open procedure creates a read-only capability for the
file and returns an integer file descriptor providing access to that capability.
From this point on, the ACLs cease to be relevant. The x bit could be
removed from alpha or the r bit from beta, and the open file descriptor
would continue to function. That is, an open file descriptor is an irrevocable
capability, as described in Section 7.4.2.

7.5 Alternative Granularities of Protection

Sections 7.3 and 7.4 showed how an operating system can protect processes
from unwanted interaction with one another. Section 7.5.1 considers the
possibility of providing analogous control over interaction even within a
single process, and Section 7.5.2 considers protecting entire operating system
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environments from one another, within a single computer.

7.5.1 Protection Within a Process

When I described what a process is, I indicated that it is the unit of gran-
ularity for protection provided by the operating system. That is, operating
systems protect processes from each other, but generally do not protect
components within a process from each other. This does not mean that pro-
tection within a process isn’t important or can’t be achieved. Instead, such
protection is normally a job for middleware, rather than for the operating
system.

Consider, for example, the Java objects and threads that are used in
application servers. Because a considerable amount of infrastructure can be
safely shared among the running instances of web-based applications, and
because instances are frequently created and later terminated, you wouldn’t
want to pay the overhead cost of an operating system process per application
instance. Instead, application servers allow numerous instances to exist
within a single operating system process. On the other hand, an application
server may contain applications from many different sources. If they were
not protected from one another, you would have the same sort of debugging
and security nightmares that you would have if processes were unprotected.

In order to protect applications from one another, even if they coexist
within a single process, the process runs the Java Virtual Machine (JVM ),
which provides protection and other basic support for Java objects and
threads. Thus, the JVM provides a good example of how middleware can
provide protection for components within a process.

To protect Java threads, the JVM makes sure that the Java code it is
executing obeys certain restrictions. A typical restriction is that no method
may ever read from an uninitialized local variable, that is, one into which it
has not previously written. This prevents the method from picking up some
value left in memory by a previously executed method, which might have
been in a different application instance.

In principle, the JVM could enforce its restrictions by carefully monitor-
ing each step of the Java program as it is executing. For example, the JVM
could maintain a set of initialized local variables as the program runs. Any
assignment to a local variable would add it to the set. Any use of a local
variable would be preceded by a check whether the variable is in the set.

The problem with this approach is that it would make all Java code run
like molasses in winter. Each instruction in the program would be preceded
by hundreds of other instructions checking whether various restrictions were
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satisfied. As such, the program would be running hundreds of times more
slowly.

Therefore, real JVMs take a smarter approach. As each class is loaded, a
JVM component called the verifier mathematically proves that everywhere
along all paths through the code, no uninitialized variable is ever read. The
verifier also checks other restrictions similarly. Having proved that all paths
are safe (in the checked senses), the JVM can then run the code full speed
ahead.

The verifier cannot check potential paths through the code one by one,
because there may be a great number of paths, or even infinitely many.
(Consider, for example, a method with a while loop in the middle. There
is one path from the beginning of the method to the end that goes around
the loop zero times, one that goes around the loop one time, and so forth.)
Therefore, the verifier constructs its safety proofs using the same sort of
dataflow analysis that compilers have traditionally used for optimization.
This analysis involves finding the greatest fixed-point solution of a system of
simultaneous equations. An important general theorem regarding dataflow
analysis shows that the greatest fixed-point solution gives a set of security
guarantees that can be counted on to hold at a point, independent of which
path is taken to that point. Therefore, the verifier can check all paths for
safety at once. In Exercise 7.13, you will prove this theorem.

7.5.2 Protection of Entire Simulated Machines

You have seen that the JVM allows you to zoom in and create a whole
collection of protected domains within a single operating system process.
Similarly, you can zoom out and treat a whole operating system, complete
with all its processes, as just one protected domain among many within a
larger Virtual Machine Monitor (VMM ). A VMM uses the computer it runs
on to simulate the execution of several similar computers, each of which can
then run its own operating system with its own processes.

Two commercially significant VMMs are VMware’s ESX Server and
IBM’s z/VM. ESX Server uses IA-32 hardware to simulate multiple IA-32
servers; for example, a single four-way multiprocessor server might simu-
late six uniprocessor servers, each with its own operating system, such as
Microsoft Windows or Linux. The six simulated processors take turns ex-
ecuting on the four real processors, under control of the VMM. Similarly,
z/VM uses IBM’s mainframe zSeries to simulate multiple zSeries machines,
each of which could be running one of IBM’s legacy mainframe operating
systems or could be running Linux.
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To see how a VMM can be used, you can look at the example in Fig-
ure 7.18. Each box indicates a hardware or software component. At the
bottom is the Xeon hardware, a member of the Pentium family, which sup-
plies the IA-32 interface upward to the next layer. That next layer is a VMM
(specifically the ESX Server), which simulates three virtual machines, each
also providing the IA-32 interface. The leftmost virtual machine is running
Linux 2.6, the middle one is running Windows 2003, and the rightmost one is
running an older version of Linux, 2.4. The presence of Microsoft Windows
and Linux on the same hardware may have come about through server con-
solidation; perhaps two different groups within the enterprise had settled
on different software environments but now are being hosted on common
hardware to reduce total cost of ownership. The two versions of Linux may
reflect a similar story, or may be a case where a new version is being tested
while an older version continues to be in production use. In the particular
case shown in the figure, the Linux 2.6 virtual machine is running a single
process (the Apache web server), whereas the other two virtual machines
are running two processes apiece (in each case, a database server and a web
server).

Notice that processes can benefit from two levels of protection, one pro-
vided by the operating system and another by the VMM. For example,
Windows 2003 is responsible for isolating the SQL Server process from the
IIS process. If someone finds a way to subvert Windows’s protection mech-
anism, this isolation may fail. However, the processes running on the other
two virtual machines will remain isolated, so long as the ESX Server soft-
ware continues to do its job. Consider another explanation for why two
versions of Linux are running on the same machine: one group, with a lot
at stake, might choose to run the latest version with all available security
patches, while another group, with less at stake, might choose to stick with
an older, less secure version so as to avoid the disruption of an upgrade.
The high-stakes group need not fear consequences from an attacker break-
ing into the low-stakes group’s system any more than if the two were on
different hardware machines. The VMM provides that assurance.

The operation of a VMM is similar to that of an operating system.
Like an operating system, it uses scheduling to divide processing time and
uses page mapping to divide memory. The key difference is that it doesn’t
support any higher-level APIs, such as the file operations found in POSIX or
Win32. Instead, the VMM supports an interface similar to a real machine’s,
complete with I/O devices.

Because the virtual machines use the same instruction set architecture as
the real hardware, the VMM does not need to simulate their execution on an
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Linux 2.6 Windows 2003 Linux 2.4
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Figure 7.18: This example shows a VMM, the VMWare ESX Server, sup-
porting multiple operating systems. The label within each box identifies
a component, whereas the label on each horizontal dividing line identifies
an interface. Unlike the operating systems, the VMM provides upward the
same IA-32 interface that it relies upon from below.

instruction-by-instruction basis. Most instructions can be directly executed
by the real hardware. The only issue is with privileged instructions, of the
kind used by operating systems for such tasks as managing I/O hardware
or changing page tables.

Recall that processors generally have two operating modes, a kernel mode
in which all instructions are legal, and a user mode, in which dangerous
instructions transfer control to a trap handler. The trap handler is part
of the software that runs in kernel mode. I need to explain how these two
modes can be used to support three levels of execution: the VMM, the
operating system, and the application processes.

The VMM runs in kernel mode. When the underlying processor executes
instructions from one of the virtual machines, on the other hand, it does so
in user mode. That way, the VMM is in complete control and can protect the
virtual machines from one another. However, the virtual machines still need
to support a simulated kernel mode so that they can run operating systems.
Therefore, the VMM keeps track of each virtual machine’s simulated mode,
that is, whether the virtual machine is in simulated kernel mode or simulated
user mode.

If a virtual machine executes a privileged instruction (for example, to
manage I/O hardware), a trap to the VMM occurs, as shown in Figure 7.19.
The VMM then checks whether the virtual machine was in simulated ker-
nel mode. If so, the privileged instruction was attempted by the virtual
machine’s operating system, and the VMM carries out the intent of the in-
struction, for example, by doing the requested I/O. If, on the other hand,
the virtual machine was in simulated user mode, then the VMM simulates
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Figure 7.19: When an attempt is made to execute a privileged instruction
within a virtual machine, a trap to the VMM occurs, whether the virtual
machine is executing operating system code or application code, because the
hardware is in user mode in either case. However, the VMM knows whether
the virtual machine is in simulated kernel mode or simulated user mode
and responds accordingly. In (a), the virtual machine is in simulated kernel
mode, so the VMM simulates the privileged instruction and then returns
from the trap. In (b), the virtual machine is in simulated user mode, so the
VMM simulates the trap that would have occurred on a real machine: it
switches to simulated kernel mode and jumps to the operating system trap
handler within the virtual machine.
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a trap within the virtual machine by switching it to simulated kernel mode
and jumping to the trap handler within the virtual machine’s operating sys-
tem. In Exercise 7.14, you can consider how the trap handler within the
virtual machine’s operating system can later return control to the applica-
tion program.

One particularly interesting design question is how virtual memory is
handled. The operating system running within a virtual machine sets up a
page table mapping virtual page numbers into what it thinks of as physical
page frame numbers. However, the VMM does another level of mapping,
translating the virtual machine’s “physical” page frames into the truly phys-
ical page frames of the hardware. That way, the VMM can allocate the
hardware’s memory among the virtual machines and can do tricks like us-
ing copy on write (COW) to transparently share memory across the virtual
machines.

In order to efficiently support this double translation of addresses, the
VMM computes the functional composition of the two address translations
and provides that composition to the hardware’s MMU. That is, if the virtual
machine’s simulated page table would map A into B, and the VMM wants
to map B into C, then the VMM puts a translation directly from A to C
into the real page table used by the hardware MMU.

7.6 Security and Protection

Protection plays an essential role in security. If I were to take the title of
this section literally, it could be a very long section. Instead, I will simply
highlight a few key security issues directly raised by the material in this
chapter.

Perhaps the most important take-home message is that although protec-
tion is essential to security, it is not the same as security. The two are easily
confused. For example, security includes maintaining confidentiality, and
protection includes the use of access control lists to limit read access per-
missions. Surely these are the same, right? Wrong. If the data in question is
on a disk drive that is in an unlocked room, then all the access control lists
in the world won’t keep it confidential. An adversary simply needs to steal
the drive and read it on his own machine, which is programmed to ignore
ACLs. In Chapter 11, I will address some of the broader security picture.

Many nasty security pitfalls arise from the distinction between a principal
and a subject, or in simplified terms, between a user and a process. A process
that is operating with the credentials of a user may carry out actions that
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the user would not approve of. One way this could happen is if the user
authentication system is weak enough for someone else to log in as you.
I will not consider that topic further here, instead concentrating on the
problems that remain even if the system knows which human is behind each
keyboard.

In discussing POSIX processes, I mentioned that user credentials are
retained when a process forks and also when it executes a program. Thus,
any program you run will be acting with your credentials. (The same is
true in other systems, such as Microsoft Windows.) This immediately raises
the possibility of a Trojan horse, a program that has some apparent benign
purpose but that also has a hidden nefarious intent. Suppose someone gives
you a program and tells you it shows a really funny animation of Bart
Simpson impersonating Bill Gates. You run it, enjoy the animation, and
chuckle merrily. Unfortunately, you aren’t the only one laughing; so is the
programmer who knows what else the program does other than showing
the animation. Remember: whatever the program does, “you” are doing,
because the process is acting with your user credentials. If you have the
ability to send all your private data over the network (which you probably
do), then so does the Trojan horse.

One variant of the general Trojan horse theme is the email worm. Sup-
pose you receive an email with an attached program. When you run the
program, it can do anything it wants with your credentials. Suppose what
it does is send new email to everyone in your address book, with the same
attachment. (After all, the protection system thinks you have every right
to read your address book and to send email with your return address.) In
this way, the same malicious program can be spread to many computers all
over the world. Of course, the worm can perform other actions as well.

Suppose you never knowingly run gift programs. Does that make you
safe from Trojan horses? Not necessarily; there are a variety of ways you
might unknowingly run a program. What follows is one example. Recall
my discussion of execlp. I mentioned that it looks through a sequence
of directories until it finds the program file, just as the shell does. This
search means that even when you type in as simple a command as ps (to
list your processes), you don’t necessarily know what program is being run;
it might not be /bin/ps, if some other program named ps is in one of the
other directories that comes before /bin in the search path. In particular,
it was once common for UNIX users to have search paths that started with
the current directory (named .), before any system-wide directories. That
has ceased to be popular, because it is an open invitation to Trojan horses
planted by adversaries who don’t have write access to any of the system-wide
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directories. Even putting the current directory last in the search path (as
many users still do) is not completely safe; a clever adversary could plant
a Trojan horse named with a common misspelling or with a program name
that is installed on some systems, but not the one under attack. The only
really safe alternative is to leave the current directory out of your search
path. When you want to run a program in your current directory, you will
need to specify an explicit pathname. For example, to run the microshell

program from Figure 7.6, you might compile it in your current directory and
then run ./microshell.

An attacker who wants to plant a Trojan horse for you to run may not
even need to take advantage of search paths, if one of the programs you
run has file access permissions set so that other people can overwrite the file
with a modified version. Similarly, if the directory containing the program is
writable, the program can be deleted and replaced. Setting programs (or the
containing directories) to be writable seems like such an obvious invitation
for Trojan horses that you might find it difficult to imagine such situations
arise. Yet I have repeatedly encountered installer programs for commercial
application software that set the installed programs or directories to be
writable by all users of the system. In the face of such installers, a system
administrator needs to be vigilant and manually change the permissions.

The Trojan horse problem is far more dangerous in a system with Dis-
cretionary Access Control (DAC) than one with Mandatory Access Control
(MAC), because there is far more that “you” (actually, the Trojan horse) can
do in a DAC system. For example, in a MAC system that enforces military
classification levels, no Trojan horse can possibly read from a top secret file
and then write a copy into an unclassified file; the operating system forbids
any process from reading and writing in this way. Notice that using MAC
rather than DAC is only partially intended to guard against computer users
making unwise decisions. Far more, MAC is guarding against the organiza-
tion needing to trust all programs’ authors. (Trust in the people running
the programs can come from nontechnical sources, like keeping an eye out
for employees who seem to have too much money. For external program
authors, this would be more difficult.)

Another security pitfall comes from the ability of a setuid program to
propagate its owner’s credentials. Suppose that an adversary briefly has the
ability to act with your credentials, using some means other than setuid.
(This could be through a Trojan horse, but alternatively the adversary might
simply use your keyboard while you are getting coffee.) You cannot assume
that the adversary’s ability to do damage is over when the initial access
method is removed (when you return from getting coffee). A smart adversary
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will use the brief access to create a setuid shell, owned by you and executable
by the adversary. Then, at any convenient later time, the adversary can run
any programs whatsoever with your credentials. A real-world analogy would
be if leaving your door unlocked made it easy for a burglar to retrofit a secret
entrance into your house.

System administrators fight back against unwanted setuid programs with
measures such as turning the setuid feature off for file systems that normal
users can write into, as well as regularly scanning the file systems looking
for setuid files. These measures are valuable but are treating a symptom
of a bigger problem. The setuid mechanism, in its elegant generality, is a
fundamental mismatch for most organizational security policies. In most
organizations, authorization can flow only from the top down; low-level em-
ployees are not empowered to pass their authority on to someone else.

Setuid programs raise an additional set of issues, which are in a sense
the opposite of the Trojan horse problem. Security problems arise whenever
the person providing authority is different from the person deciding how
that authority will be used. A Trojan horse tricks the user running the
program into providing credentials for actions specified by the program’s
author. Conversely, a setuid program provides the author’s credentials, but
might unintentionally allow the user running it to control what actions it
carries out. Either way, there is a mismatch between the source of authority
and the source of control.

Programming oversights explain most cases where a setuid program cedes
control to the user running it. For example, suppose the designer of a
setuid program wants it to print out a file and wants the user running
the program to specify the name of the printer (but not of the file). The
program might execute a shell command like lpr -Pprintername filename,
where the printername comes from the user’s input and the filename is
controlled by the setuid program itself. This seemingly innocent command
could be compromised in several ways, such as the following:

• If the adversary can control the directory search path, the lpr com-
mand might be executing a program of the adversary’s choice, rather
than the normal printing command.

• If the adversary can input a printer name that contains a space, the
print command might gain an extra argument, which would be taken
as another filename to print, this one specified by the adversary.

• If the adversary can input a printer name that contains a semicolon,
the print command might turn into two separate commands, one to run
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lpr and one to run some totally different program of the adversary’s
choice.

UNIX system programmers have developed a whole body of lore on how
to write setuid (or setgid) programs without falling into traps such as the
preceding example. Some of this lore addresses particular pitfalls, such as
interpolating arbitrary user input into shell commands. However, there are
also some more fundamental steps you can take to reduce the risk of a
program being exploited. Keep in mind that risk is a function both of the
chance of exploitation and of the damage that can be done:

• You can reduce the opportunity for exploitation by making each setuid
(or setgid) program as small and simple as possible and by making it
executable by as few users as possible.

• You can reduce the damage an exploitation could do by having each
setuid (or setgid) program owned by a special user (or group) that
exists just for that one purpose and that has only the relevant permis-
sions. The program should not be owned by a normal user or group
that has many other unrelated permissions. (The worst choice is if the
setuid program is owned by the special system administration account,
root, which has permission to do absolutely anything.)

On the positive side, setuid programs can be very valuable in enforcing
security policies that go beyond what basic owner-group-other permissions
(or even full ACLs) can represent. For example, suppose you want to al-
low a group of employees to write into a file, but only with the following
limitations:

• These employees may only add entries to the end of the file, not modify
existing entries.

• Each entry must include a time stamp and the name of the employee
making the addition.

• These employees may make additions only during normal business
hours, when they are subject to physical observation, so as to provide
greater protection against impersonation.

A sophisticated protection system might have special accommodation for
some of these needs; for example, you saw that Microsoft Windows has
separate permissions for “append data” versus “write data.” However, it
is unlikely that any system would directly support the whole package of
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application-specific policies. Instead, you could funnel this group’s access
through a setuid program that enforces the policies. Database programmers
commonly use a similar technique: rather than granting users permission
to directly access a table, they grant the users permission to run a stored
procedure or to access a specialized view of the table.

Because I showed Microsoft Windows’s ACLs through the graphical user
interface, I have a good opportunity to point out the importance of user
interface design to security. A protection system does not enhance security
by virtue of being able to correctly enforce a security policy; instead, it
enhances security only if it is actually used to correctly enforce the policy. In
general, the more sophisticated a mechanism, the lower the chance that users
will actually figure out how to use it correctly. If they make mistakes that
result in overly restrictive protections, someone will notice and complain. If
they make mistakes that result in insufficiently restrictive permissions, no
one is likely to complain. Thus, the user interface design must help the user
manage complexity and reduce the chance of errors. Microsoft has done this
in several ways, such as providing a simplified interface to common groupings
of permissions, with the individual underlying permissions visible only on
request. Also, the uniform rule that deny permissions take precedence over
allow permissions is less likely to result in accidental underprotection than
the lower-level rule of processing the allow and deny permissions in a user-
specified order.

My description of the meaning of rwx permission bits on directories ig-
nored an important issue. When I discuss file naming in Chapter 8, you will
see that a single file can have multiple filenames, listed in multiple directo-
ries. Thus, saying that the x permission bit on a directory controls access
to files in that directory is an oversimplification. This directory permission
controls whether names in that directory can be used to access files—but
the same files may in any case be accessible through other names in other
directories. Unless you know that a file only has one name, the only sure-
fire way to restrict its access is with its own permission bits, not with an
ancestor directory’s x bit.

In discussing Virtual Machine Monitors, I remarked that a VMM can
keep processes running in separate virtual machines isolated from one an-
other, even in the face of a security breach in one or both virtual machines’
operating systems. This sounds on the surface like an example of defense in
depth, the general security principle of providing multiple independent safe-
guards, so that even if one is breached, the others prevent a system security
failure. However, this view is not entirely correct, because a VMM has com-
plete power over the virtual machines; if the VMM’s security is breached, the
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security of the operating systems becomes irrelevant. Therefore, isolating
two processes with a VMM and operating systems will not necessarily result
in better protection than an operating system alone, because an attacker
need only subvert the VMM. Of course, it may be that the VMM is more
secure than the operating system, because it is much simpler. However,
the enhanced security, if there is any, comes from substitution of a better
protection mechanism, rather than from the cumulative contribution of an
additional protection mechanism.

Exercises

7.1 Consider how fork is typically used today. On a uniprocessor system,
would it make more sense to schedule the child process to run immedi-
ately after a fork or continue to run the parent process? Explain why.
Be sure to take COW into account.

7.2 I described access matrices as containing access permissions for indi-
vidual processes, rather than only for users. Give at least three ways
that a POSIX process could have access permissions different from
those of any user.

7.3 What is the difference between a DAC system and a MAC system?
Give an example of a circumstance under which you would prefer a
DAC system, and explain why. Give an example of a circumstance
under which you would prefer a MAC system, and explain why.

7.4 Explain the relationship between access matrices, C-lists, and ACLs.

7.5 Explain the relationship between handles, C-lists (or handle tables),
and capabilities in a system like Microsoft Windows.

7.6 Compare C-list capabilities with addressable capabilities. Which is
more powerful for the application programmer? Which is simpler for
the operating system designer? Justify your answers.

7.7 Suppose the processes on a computer occupy a total of 8 GiB of virtual
memory, half of which is occupied by addressable capabilities. Suppose
that each capability is represented by a random string of 256 bits,
subject to the constraint that no two of the capabilities are equal.
What is the probability that a randomly generated string of 256 bits
would equal one of the capabilities?
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7.8 On a Microsoft Windows system, suppose there are two user groups,
big and small, with the property that all users who belong to small

also belong to big. Suppose, further, that user jdoe belongs to small

(and hence to big). You are not to know what other users belong to
the groups.

(a) Explain how a file’s ACL could be set to allow read access only
to users who are members of big but not of small.

(b) Explain why the file’s ACL cannot be modified using the ordi-
nary user interface to additionally allow jdoe read access, without
changing any other user’s access rights.

(c) Explain how the alternative rule used within the Windows kernel
for combining allow and deny permissions would make the goal
stated in the previous part possible.

(d) Make an argument why this alternative is superior to the one
used in the Microsoft Windows interface.

(e) Make an argument why the permission combining rule from the
Microsoft Windows interface is superior to the alternative from
the kernel.

(f) Which argument do you find more persuasive? Why?

7.9 For combining permissions from multiple applicable ACL entries, it is
desirable to use a combining operation that is associative and commu-
tative.

(a) Show that the combining operation specified by the table in Fig-
ure 7.17 on page 308 is associative and commutative.

(b) Show that if the operation is changed so that Neither combined
with Neither yields Deny, the operation is no longer associative.

(c) Is the alternative combining rule used within the Windows kernel
associative and commutative? Explain.

7.10 Think creatively and come up with a scenario where it would be valu-
able for the owner of a POSIX directory to grant someone r permission
to that directory but not x permission.

7.11 On a POSIX system, a file and a directory are both owned by user
37 and group 53, and both have permissions rw-r-x--x; that is, rw-
for the owner, r-x for the group, and --x for others. The members of
group 53 are users 37, 42, and 71.
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(a) Which user(s) may read the file?

(b) Which user(s) may write the file?

(c) Which user(s) may execute the file?

(d) When the file is executed by user 85, what are the two possibilities
for the effective user ID?

(e) What determines which of these two possible user IDs is used?

(f) Which of the following are true?

i. User 37 may list the contents of the directory.

ii. User 37 may use the directory in a pathname to access files
under it, subject to those files’ permissions.

iii. User 42 may list the contents of the directory.

iv. User 42 may use the directory in a pathname to access files
under it, subject to those files’ permissions.

v. User 85 may list the contents of the directory.

vi. User 85 may use the directory in a pathname to access files
under it, subject to those files’ permissions.

7.12 What is the function of the sticky bit on a directory in a POSIX
system?

7.13 In this exercise, you will prove a theorem relied upon by the JVM
verifier. Let S be a set of security properties, and let (V,E) be a
directed graph with vertices V and edges E ⊆ V × V . (The graph
represents a program; the vertices are points in the program and the
edges are possible control flows.) Let v0 be a distinguished element
of V , the start vertex. If the edge (u, v) is in E, one says u is a
predecessor of v; the set Pred(v) consists of all predecessors of v.
For each edge (u, v) ∈ E, let fuv be a monotone function from 2S

to 2S . That is, fuv is a function such that if A ⊆ B ⊆ S, then
fuv(A) ⊆ fuv(B) ⊆ S. If v0v1 · · · vn is a (possibly cyclic) path in
the directed graph from the start vertex v0 to vn, then define the
security properties that hold after the path to be H(v0v1 · · · vn) =
fvn−1vn(fvn−2vn−1(· · · fv0v1(∅) · · ·)). Define the security properties that
are guaranteed at vertex v to be G(v), where G is some function that
satisfies the following equations:

G(v0) = ∅
G(v) =

⋂
p∈Pred(v)

fpv(G(p)), v 6= v0.
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Use induction on the length of the path v0v1 · · · vn−1vn, n ≥ 0, to
prove that G(vn) ⊆ H(v0v1 · · · vn−1vn), that is, after any path leading
to vn, all the security properties guaranteed at vn hold.

7.14 Part (b) of Figure 7.19 on page 316 shows how a hardware-level trap to
the VMM is used to simulate a trap to the operating system running
within a virtual machine. The accompanying text also describes this
situation. When the trap handler in the operating system finishes
and executes a return-from-trap instruction, how is control transferred
back to the application program? What mode changes, both real and
simulated, occur?

7.15 On a copy of Figure 7.18 from page 315, use five different colors to
shade the boxes for the three operating systems, the VMM, and the
hardware. Then trace over each vertical line segment with the color
corresponding to the component that creates that boundary.

Programming Projects

7.1 Write and test a variant of the forker program from Figure 7.1 on
page 278, in which as much code as possible is shared between the
parent and child processes. The variant should still produce the same
output as the original forker program.

7.2 Write a variant of the forker program from Figure 7.1 on page 278,
in which the parent and child processes are more dissimilar from one
another than in the given program.

7.3 Learn enough C++, if you don’t already know it, to be able to read
in a line of text and break it into whitespace-separated words. Then
modify the microshell of Figure 7.6 on page 283 to accept multi-word
commands and use execvp to pass the words as command line argu-
ments.

7.4 Modify your microshell from the previous project so that if the last
word in a command is &, that word is not passed as a command line
argument. Instead, your program should skip the waitpid.

Try using your modified microshell to run a command in the back-
ground that subsequently terminates. If you then run a ps command
in the microshell, you should see that there is still a zombie from the
terminated process, because your microshell didn’t wait for it. The
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problem is that if you keep running background processes that termi-
nate, you’ll accumulate more and more zombies. (Once you exit the
microshell, all the zombies will be reaped by a special process called
the init process, which reaps orphaned zombies.) One way to avoid
the accumulation of zombies would be to have your microshell execute
the following code after reading in each command line:

while(waitpid(-1, 0, WNOHANG) > 0){

}

Each time around the loop, this code “waits for” a child process, except
that it won’t actually wait, it will only reap the process if it is already
a zombie—that’s what the WNOHANG option means. The first argument
is -1 instead of a specific process ID number to indicate that any child
process is OK. The loop keeps repeating so long as it finds another
zombie to reap.

7.5 From the behavior of the forker program in Figure 7.1 on page 278,
you can tell that each parent and child process gets its own copy of
the loopCount variable. Are the two copies at equal virtual addresses
or different virtual addresses? Testing this might help you determine
whether you are using a single address space system or a multiple
address space system. Modify the program so that each process prints
out &loopCount, the address of loopCount. What can you conclude
from the results you observe?

Exploration Projects

7.1 Figure 7.20 contains a simple C program that loops three times, each
time calling the fork system call. Afterward it sleeps for 30 seconds.
Compile and run this program, and while it is in its 30-second sleep,
use the ps command in a second terminal window to get a listing
of processes. How many processes are shown running the program?
Explain by drawing a “family tree” of the processes, with one box for
each process and a line connecting each (except the first one) to its
parent.

7.2 On a Linux or UNIX system, read the documentation for the find

command. Use it to search for setuid or setgid programs. In as many
cases as possible, determine why the program needs to be setuid or
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#include <unistd.h>

int main(int argc, char **argv){

int i;

for(i = 0; i < 3; i++){ /* loops 3 times */

fork(); /* each time calling fork */

}

sleep(30); /* then sleeps 30 seconds */

}

Figure 7.20: This C program, multiforker.c, loops three times and each
time forks. At the end, it sleeps 30 seconds so that you have time to run
the ps command and see how many copies of the process are running.

setgid. In each case, try to determine whether the file is owned by a
special-purpose user or group that owns only the file and a few related
ones.

7.3 Browse the web for cases where buggy setuid programs have consti-
tuted security vulnerabilities. Write up a summary of the cases you
find; look in particular for recurrent themes.

7.4 Occasionally an adversary will gain control of an FTP or web server
from which widely used software is distributed. Explain why this is
a particular source of concern, in terms of one of the security issues
discussed in this chapter. Read CERT Advisory CA-2002-28 (which
you can find on the web) for an example. What countermeasures are
suggested in that advisory? How does each of them help mitigate this
sort of problem?

7.5 On a Linux or UNIX system, use the same find program as in Explo-
ration Project 7.2 to files that are executable by someone and writable
by all users, as well as to identify directories that are writable by all
users. Do you find any opportunities for the installation of Trojan
horses?

7.6 Suppose you carefully check the source code of all program you run,
and you make sure to run only versions that you have compiled yourself
from the source code you check. Are you then safe against Trojan
horses? Think this through for yourself, and then read Thompson’s
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Turing Award lecture, cited in the notes at the end of this chapter.
Write a brief summary explaining how Thompson has influenced your
thinking on this topic or why he hasn’t.

7.7 Research the “sandboxing” features included in Mac OS X and those
used by the Chromium browser, which runs under various operating
systems. Write a paper in which you compare the two perspectives
on sandboxing, including in particular how they fit together when
Chromium is run under Mac OS X.

Notes

The idea that a process is a group of threads sharing a protection context
dates back at least to a seminal 1966 paper by Dennis and Van Horn [48].
The terminology has shifted over the decades, however. They (and other
early authors) used the word “process” for what today is called a thread
and “computation” for what today is called a process.

You can supplement my brief introduction to the POSIX API for process
management in two ways. One is by reading the official documentation;
the POSIX standard is on the web at http:// opengroup.org/ unix , and the
documentation for specific implementations (such as Linux) is also easily
available. The other approach, which is likely to be more useful at first,
would be to read a book on the topic. Two good choices are those by
Stevens and Rago [142] and by Robbins and Robbins [120].

Multics was a very influential multiple address space system. Although
processes could share individual memory segments (named with file names in
a directory tree), each process used its own segment numbers for addressing,
rather than the shared segment names. Segments were protected using a
combination of ACLs and capabilities. See, for example, Daley and Dennis’s
article [42] and the later retrospective by Saltzer [127].

Another interesting feature of the Multics system, which made its way
into the IA-32 architecture, was the use of intermediate processor protection
modes between the kernel and user modes I describe. The availability of
multiple protection modes joins segmentation as an underutilized feature of
the IA-32 architecture.

The case for single address space systems has been made by Chase et
al. [30]. The Itanium mechanism is described in Intel’s documentation [84].
A good source of information on the AS/400 is Soltis’s book [136]. Other
relevant sources are papers on the System/38 [21, 135, 82].

http://opengroup.org/unix


330 CHAPTER 7. PROCESSES AND PROTECTION

Harrison, Ruzzo, and Ullman [72] use the access matrix model to show
that theoretical results independent of specific protection systems are pes-
simistic. As mentioned in the text, they showed some important problems
to be undecidable and others to be PSPACE-complete. A decision problem
is PSPACE-complete if it satisfies two criteria. First, the problem must
be in PSPACE, which means it is solvable using a polynomially-bounded
amount of memory and unlimited time. Second, the problem must have
the property that if a polynomial-time algorithm exists to solve it, then
such an algorithm also exists for every other problem in PSPACE. Because
of this definition, either all problems in PSPACE have polynomial-time so-
lutions, or no PSPACE-complete problem has a polynomial-time solution.
The general consensus is that the latter is the more plausible possibility.

Capabilities were introduced by Dennis and Van Horn [48] in the limited
context of C-lists, where they remain in today’s mainstream systems. The
greater power of addressable capabilities was explored by Fabry [57] and
Linden [101]. Variants of these ideas were incorporated into various research
systems, of which Hydra [158, 36] and CAP [111] are well known. The most
direct influence of the ideas, however, seems to be on the design of IBM’s
commercial System/38 and AS/400 systems, for which citations were given
previously.

As described in the text, POSIX descriptors are essentially a variant of
C-list capabilities. However, the overall POSIX protection model is only
rather loosely connected with the capability model. Interestingly, a more
full-fledged capability model can be retrofitted into a POSIX system, as
shown by Watson, Anderson, Laurie and Kennaway [154].

The JVM verifier is specified by Lindholm and Yellin [102]. The VMware
ESX Server VMM is described in an article by Waldspurger [151], which does
a wonderful job of showing how operating system concepts are applied to a
practical design problem.

A good overview of current directions in VMM technology appeared in
May of 2005 as a special issue of Computer magazine [58].

I said that z/VM is a VMM that simulates zSeries machines. Strictly
speaking, the VMM is just one component of z/VM, the one called CP,
which is short for Control Program. Also, the simulated architecture is
technically called z/Architecture; the zSeries consists of particular hardware
implementations of that architecture, analogous to the Pentium family being
implementations of IA-32.

IBM’s z/VM has evolved from its roots in the 1960s. In particular, the
early version of CP-67 described by Meyer and Seawright [108] made use
of paging for its own operation but did not allow paging within the virtual
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machines. Two years later, Parmelee et al. [114] describe a version of CP-
67 that did provide paging within the virtual machines. The evolution of
CP-67 into VM/370 is described by Seawright and MacKinnon [131] and by
Creasy [40]. VM/370 itself evolved into today’s z/VM, by way of VM/XA
and VM/ESA.

One of the most devious forms of Trojan horse was explained by Thomp-
son in the lecture he gave upon receiving the Turing Award [148].
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Chapter 8

Files and Other Persistent
Storage

8.1 Introduction

In this chapter, you will study two different kinds of service, each of which
can be provided by either an operating system or middleware, and each of
which can take several different forms. Persistence services provide for the
retention of data for periods of time that are long enough to include system
crashes, power failures, and similar disruptions. Access services provide
application programs the means to operate on objects that are identified by
name or by other attributes, such as a portion of the contents. In principle,
these two kinds of service are independent of one another: persistent objects
can be identified by numeric address rather than by name, and naming
can be applied to non-persistent objects. However, persistence and access
services are often provided in concert, as with named files stored on disk.
Therefore, I am addressing both in a single chapter.

Any kind of object that stores data can be persistent, whether the object
is as simple as a sequence of bytes or as complex as an application-specific
object, such as the representation of a retirement portfolio in a benefits
management system. In contemporary mainstream systems, the three most
common forms of persistent storage are as follows:

• A file, which is an array of bytes that can be modified in length, as
well as read and written at any numerically specified position. (His-
torically, the word has had other meanings, but this definition has
become dominant.) File storage is normally provided by operating
systems and will serve as my primary example in this chapter.

333
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• A table, which in a relational database system is a multiset of rows
(also known as tuples or records). Each row provides an appropri-
ately typed value for each of the table’s columns. For example, a
table of chapters might have a title column, which holds character
strings, and a number column, which holds integers. Then an individ-
ual row within that table might contain the title "Files and Other

Persistent Storage" and the number 8. Database storage is nor-
mally provided by middleware, rather than by an operating system.

• A persistent object, which is an application-specific object of the sort
associated with object-oriented programming languages. For example,
Java objects can be made persistent. Persistent objects are normally
supported by middleware using one of the previous two types of per-
sistent storage. Unfortunately, there are many competing approaches
to supporting persistent objects; even the Java API does not yet have
a single standardized approach. Therefore, I will not discuss persistent
objects any further.

Access services can also take a variety of forms, from a single directory of
unique names to the sort of sophisticated full-text search familiar from the
web. I will concentrate on two access options that are popular in operating
systems and middleware:

• Hierarchical directories map names into objects, each of which can
be a subdirectory, thereby forming a tree of directories (or nested file
folders). In some variants, objects can be accessible through multiple
names, either directly (multiple names refer to one object) or indirectly
(one name refers to another name, which refers to an object). Oper-
ating systems generally use hierarchical directories to provide access
to files.

• Indexes provide access to those objects that contain specified data.
For example, an index on a table of orders could be used to find those
rows that describe orders placed by a particular customer. Relational
database middleware commonly uses indexes to provide access to rows.
Files can also be indexed for fast searching.

The design of persistent storage mechanisms is influenced not only by
the service being provided, but also by the underlying hardware technology.
For many years the dominant technology has been moving-head magnetic
disk drives. Although solid-state flash memory is playing a rapidly increasing
role, disk drives are likely to remain important for years to come. Therefore,
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Section 8.2 summarizes the key performance characteristics of disk drives;
this summary serves as background for the design decisions explained in the
remainder in the chapter.

Then, in Section 8.3, I will present an external view of a persistence
service, looking at the file operations made available by POSIX operating
systems. This material is of practical value (you are more likely to use
a file system than to design one) and serves to motivate the examination
of file system design in subsequent sections. Only once you understand
what requirements a persistence service needs to meet will it make sense to
consider the internal mechanisms it uses to do so.

Moving into the underlying mechanisms for persistence, Sections 8.4 and
8.5 examine the techniques used to allocate disk space and the metadata used
to package the allocated space into usable objects. For simplicity, these two
sections make reference only to file systems. However, the techniques used
to provide space for a database table are fundamentally no different than
for a file.

Next, I turn in Section 8.6 to the primary mechanisms for locating data:
directories and indexes. Initially, I explain how these mechanisms are used
in the traditional context of file directories and database indexes, and I
point out that they are variations on the common theme of providing access
through search keys. I then give a brief example of how these mechanisms
can be merged to provide index-based file access. Before leaving the high-
level view of access services, I explain one topic of particular interest to
system administrators and application programmers: the ways in which
multiple names can refer to the same file. Moving into the internals, I then
present the data structures commonly used to store the directories or indexes
for efficient access.

Persistent storage needs to retain its integrity in the face of system
crashes. For example, no storage space should ever be both assigned to
a file and marked as free for other use, even if the system crashed just as
the space was being allocated. Similar properties are needed for directories
and indexes; if a crash occurs while a file is being renamed, the file should
have either its old name or its new name, but not both or neither. Because
Chapter 5 covered the use of logs to provide durable atomic transactions,
you have already seen the primary mechanism used to ensure integrity in
contemporary persistent storage systems. Nonetheless, I devote Section 8.7
to the topic of metadata integrity so that I can sketch the alternative ap-
proaches to this problem.

Many operating systems allow file systems of varying designs to be mixed
together. A Linux system might use one disk partition to store a Linux-
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specific file system, while another partition holds a file system designed for
Microsoft Windows or Mac OS X. This mixing of file systems provides a
valuable case study of polymorphism, that is, the use of multiple implemen-
tations for a common interface. I devote Section 8.8 to this topic.

Finally, I give some attention to security issues in Section 8.9 before clos-
ing with the usual selection of exercises, projects, and bibliographic notes.

8.2 Disk Storage Technology

A disk drive stores fixed-sized blocks of data known as sectors; a typical
sector size is 512 bytes. The interface between a contemporary disk drive
and a computer is conceptually quite simple, essentially just a large array
of sectors. Just like in any array, the sectors are consecutively numbered,
from 0 up to a maximum that depends on the capacity of the drive. The
processor can ask the disk controller to perform two basic operations:

• The processor can request that the controller write data from a speci-
fied address in the main memory (RAM) to a specified sector number
on the disk. For reasons you will see in the remainder of this section,
the write request can also specify a number of consecutive sectors to
be transferred.

• The processor can request that the controller read data from a speci-
fied sector number to a specified address in the main memory. Again,
the read request can specify that multiple consecutive sectors be trans-
ferred.

This view of the disk drive as one large array of sectors suffices for
writing correct software, but not for writing software that performs well.
Because some disk accesses involve far more mechanical movement than
others, the access time can vary substantially. In particular, contemporary
disk drives can sustain data transfer rates measured in tens of megabytes
per second if accessed optimally, but only tens of kilobytes per second if
accessed randomly. To understand what the software needs to do to avoid
this performance penalty of three orders of magnitude, it helps to look inside
the black box at the internal structure of a disk drive, as in Figure 8.1.

A disk drive contains a stack of platters mounted on a common spindle
and spinning at a fixed rotational speed, such as 10,000 revolutions per
minute. Data is recorded onto the surface of the platters and read back off
using heads, one recording and playback head per surface. The heads are
supported by an arm that can pivot so as to position the heads nearer or
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Platter

Spindle
Head

Head arm

Pivot for
head arm

Figure 8.1: In this photo of an opened disk drive, a stack of four platters
is visible at the top, with a head arm extending into the platter area. The
part you can see is the topmost layer of the head arm, holding the head for
the top surface of the top platter. Similar layers are stacked below it; for
example, the next layer down has heads for the bottom of the top platter
and the top of the second platter. Photo copyright by and reprinted by
courtesy of Seagate Technology LLC.
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further from the central spindle; Figure 8.1 shows the relationship between
the platters, the spindle, and the head arm. If the arm is left in a fixed
position, the rotation of the disks causes a circular region of each disk surface
to pass under the corresponding head. This circular region of a single disk
surface is known as a track ; each track is divided into hundreds of sectors.
The collection of tracks, one per disk surface, accessible at a particular
position of the head arm is called a cylinder.

Only one head can be active at any time. Depending on which head is
active and the position of the head arm, a single track’s worth of sectors
can be read or written. In order to access more data than can fit in a single
track, there are two options. A head switch changes the active head and
thereby provides access to another track in the same cylinder. A seek moves
the arm to a position closer or further from the spindle in order to provide
access to another cylinder. As it happens, the head switch time on a modern
drive is quite similar to the time needed to seek to an adjacent cylinder—a
fraction of a millisecond—so the distinction is not important; henceforth,
I’ll talk only about seeking.

The seek time is larger for tracks that are further apart, but not propor-
tionately so, for some of the same reasons as the duration of an automobile
trip is not proportional to its distance. Just as an automobile needs to ac-
celerate at the beginning of a trip, decelerate at the end of the trip, and
then painstakingly pull into a parking spot, so too a disk arm needs to ac-
celerate, decelerate, and home in on the exact position of the destination
track. The net result of this is that seeking to a track tens of thousands of
cylinders away may take 5 milliseconds, only ten times as long as seeking to
an adjoining track. Seeking to an adjoining track already takes long enough
that tens of kilobytes of data could have been transferred were the drive not
busy seeking.

Even the ten-fold speed ratio between short and long seeks is larger than
the ratio in total access time, however, because accessing a sector involves
more than just seeking to that sector’s track. Once the appropriate track
is spinning under the active head, the disk controller needs to wait for the
appropriate sector to come around to the head’s position, a delay known as
rotational latency. Because the time a disk takes to complete one revolution
is comparable to the time taken to seek across tens of thousands of cylinders,
the rotational latency can bring the total access time for a random sector
on an adjoining track to within a small factor of the access time for a sector
on a distant track.

Once an access is underway, additional sectors can be read or written
at high speed as they pass under the head assembly. Even a request for
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multiple sectors that happens to cross a track boundary will pay only the
penalty of seek time and not the larger penalty of rotational latency, because
the first sector of the track is positioned so that it passes under the head
just after the seek completes.

If the software accesses a large number of consecutive sectors, there are
two advantages for doing so in a single large request rather than several
smaller requests. One advantage is reduced overhead in the interface be-
tween computer and disk. The other difference, which is more significant,
is that issuing separate requests may cost additional disk revolutions, par-
ticularly for writes; missing the timing for a sector means waiting a full
revolution for it to come around again. (Reads are less of a problem be-
cause disk drives contain on-board RAM, known as cache buffers, to hold
data that has passed under the active head, so that it can be accessed with-
out waiting for it to come around again. Disks can use the cache buffers for
writes as well, but only if the software is designed to tolerate some loss of
recently written data upon system crash.)

Thus, the secrets to attaining a disk drive’s full potential are locality,
locality, and locality:

• Accessing a sector with a similar identifying number to the most re-
cently accessed one will generally be faster than accessing a sector with
a greatly different number.

• Accessing consecutive sectors will generally be faster than accessing
sectors that have even small differences in sector number.

• Accessing consecutive sectors in one large request will be faster than
accessing them in several smaller requests.

You should keep these performance issues related to locality in mind when
considering topics such as how disk space is allocated.

There is one other performance issue, less directly related to locality,
which I will only briefly mention here. (Seeing how it influences software
design would be interesting, but beyond the level of this book.) The software
should not wait for the disk drive to complete each request before issuing the
next request, which may be from a different thread. Disk drives are capable
of queuing up multiple requests and then handling them in whichever order
best utilizes the mechanical components. For example, if several accesses to
the same track are queued, the disk drive can perform them in the order the
sectors happen to pass under the head.

Throughout this chapter, I will focus on systems that employ a single
disk drive, for the sake of simplicity. Using multiple drives to divide or
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replicate data raises interesting trade-offs of reliability and performance;
the notes section at the end of the chapter suggests some readings if you
want to explore this area.

8.3 POSIX File API

All UNIX-like systems (including Linux and Mac OS X) support a rather
complicated set of procedures for operating on files, which has evolved over
the decades, eventually becoming part of the POSIX standard. For most
everyday purposes, programmers can and should ignore this API, instead
using one of the cleaner, higher-level APIs built on top of it, such as those
included in the Java and C++ standards. Nonetheless, I will introduce
the POSIX API here, because in many important systems, it forms the
interface between the operating system kernel and software running in user-
level application processes, even if the latter is encapsulated in libraries.

8.3.1 File Descriptors

Files are referred to in two different ways: by character-string pathnames
(such as microshell.c or /etc/passwd) and by integer file descriptors
(such as 0, 1, or 17). A pathname is a name of a file, optionally includ-
ing a sequence of directories used to reach it. A file descriptor, on the other
hand, provides no information about the file’s name or location; it is just a
featureless integer.

Many operations require file descriptors; in particular, to read data from
a file or write data into a file requires a file descriptor. If a process happens to
have inherited a file descriptor when it was forked from its parent (or happens
to have received the file descriptor in a message from another process), then
it can read or write the file without ever knowing a name for it. Otherwise,
the process can use the open procedure to obtain a file descriptor for a
named file. When the process is done with the file descriptor, it can close

it. (When a process terminates, the operating system automatically closes
any remaining open file descriptors.)

File descriptors can refer not only to open files, but also to other sources
and destinations for input and output, such as the keyboard and display
screen. Some procedures will work only for regular files, whereas others
work equally well for hardware devices, network communication ports, and
so forth. I will flag some places these distinctions matter; however, my
primary focus will be on regular files in persistent storage.
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By convention, all processes inherit at least three file descriptors from
their parent. These file descriptors, known as the standard input, stan-
dard output, and standard error output, are numbered 0, 1, and 2, respec-
tively. Rather than remembering the numbers, you should use the symbolic
names defined in unistd.h, namely, STDIN_FILENO, STDOUT_FILENO, and
STDERR_FILENO.

When you run a program from a shell and don’t make special arrange-
ments, standard input generally is your keyboard, while the standard output
and error output are both directed to the shell’s window on your display
screen. You can redirect the standard input or output to a file by using the
shell’s < and > notations. For example, the shell command

ps l >my-processes

runs the ps program with the l option to generate a list of processes, as
you saw in Chapter 7. However, rather than displaying the list on your
screen, this command puts the list into a file called my-processes. The
ps program doesn’t need to know anything about this change; it writes its
output to the standard output in either case. Only the shell needs to do
something different, namely, closing the preexisting standard output and
opening the file in its place before executing the ps program. If the ps

program has any error messages to report, it outputs them to the standard
error output, which remains connected to your display screen. That way,
the error messages aren’t hidden in the my-processes file.

Figure 8.2 contains a program illustrating how the shell would operate
in the preceding example, with a child process closing its inherited stan-
dard output and then opening my-processes before executing ps. The
most complicated procedure call is the one to open. The first argument
is the name of the file to open. Because this character string does not
contain any slash characters (/), the file is found in the process’s current
directory. (Every process has a current working directory, which can be
changed using the chdir procedure.) If the name contained one or more
slashes, such as alpha/beta/gamma or /etc/passwd, then the operating
system would traverse one or more directories to find the file to open. In
particular, alpha/beta/gamma would start with the current directory, look
for subdirectory alpha, look in alpha for beta, and finally look in beta

for the file gamma. Because /etc/passwd starts with a slash, the search for
this file would begin by looking in the root directory for etc and then in
that directory for passwd. In Section 8.6, I will discuss file naming further,
including related aspects of the POSIX API, such as how a file can be given
an additional name or have a name removed.
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#include <unistd.h>

#include <stdio.h>

#include <iostream>

#include <fcntl.h>

#include <sys/wait.h>

#include <sys/stat.h>

using namespace std;

int main(){

pid_t returnedValue = fork();

if(returnedValue < 0){

perror("error forking");

return -1;

} else if (returnedValue == 0){

if(close(STDOUT_FILENO) < 0){

perror("error closing standard output");

return -1;

}

// When there is no error, open returns the smallest file

// descriptor not already in use by this process, so having

// closed STDOUT_FILENO, the open should reuse that number.

if(open("my-processes", O_WRONLY | O_CREAT | O_TRUNC,

S_IRUSR | S_IWUSR) < 0){

perror("error opening my-processes");

return -1;

}

execlp("ps", "ps", "l", NULL); // ps with option letter l

perror("error executing ps");

return -1;

} else {

if(waitpid(returnedValue, 0, 0) < 0){

perror("error waiting for child");

return -1;

}

cout << "Note the parent still has the old standard output."

<< endl;

}

}

Figure 8.2: This C++ program, file-processes.cpp, illustrates how
the shell runs the command ps l >my-processes. After forking, the
child process closes the inherited standard output and in its place opens
my-processes before executing ps.
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The second argument to open specifies the particular way in which the
file should be opened. Here, the O_WRONLY indicates the file should be opened
for writing only (as opposed to O_RDONLY or O_RDWR), the O_CREAT indicates
that the file should be created if it doesn’t already exist (rather than signal-
ing an error), and the O_TRUNC indicates that the file should be truncated to
zero length before writing; that is, all the old data (if any) should be thrown
out. Because the O_CREAT option is specified, the third argument to open is
needed; it specifies the access permissions that should be given to the file, if
it is created. In this case, the access permissions are read and write for the
owning user only, that is, rw-------.

Even setting aside open and close, not all operations on files involve
reading or writing the contents of the file. Some operate on the metadata
attributes—attributes describing a file—such as the access permissions, time
of last modification, or owner. A variety of procedures, such as chmod,
utime, and chown, allow these attributes to be set; I won’t detail them. I
will, however, illustrate one procedure that allows the attributes of a file to
be retrieved. The C++ program in Figure 8.3 uses the fstat procedure
to retrieve information about its standard input. It then reports just a
few of the attributes from the larger package of information. After printing
the owner and modification time stamp, the program checks whether the
standard input is from a regular file, as it would be if the shell was told to
redirect standard input, using <. Only in this case does the program print
out the file’s size, because the concept of size doesn’t make any sense for the
stream of input coming from the keyboard, for example. If this program is
compiled in a file called fstater, then the shell command

./fstater </etc/passwd

would give you information about the /etc/passwd file, which you could
verify using the command ls -ln /etc/passwd.

Moving on to actually reading or writing the contents of a file, the low-
level POSIX API provides three different choices, outlined here:

Explicit Positions Sequential

Memory Mapped mmap —

External pread/pwrite read/write

A file (or a portion thereof) can be mapped into the process’s address space
using the mmap procedure, allowing normal memory loads and stores to do
the reading and writing. Alternatively, the file can be left outside the address
space, and individual portions explicitly read or written using procedures
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#include <unistd.h>

#include <time.h>

#include <sys/stat.h>

#include <stdio.h>

#include <iostream>

using namespace std;

int main(){

struct stat info;

if(fstat(STDIN_FILENO, &info) < 0){

perror("Error getting info about standard input");

return -1;

}

cout << "Standard input is owned by user number "

<< info.st_uid << endl;

cout << "and was last modified " << ctime(&info.st_mtime);

if(S_ISREG(info.st_mode)){

cout << "It is a " << info.st_size << "-byte file." << endl;

} else {

cout << "It is not a regular file." << endl;

}

return 0;

}

Figure 8.3: This C++ program, fstater.cpp, describes its standard input,
using information retrieved using fstat. That information includes the
owner, last modification time, and whether the standard input is from a
regular file. In the latter case, the size of the file is also available.
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that copy from the file into memory or from memory into the file. One ver-
sion of these procedures (pread and pwrite) needs to be told what position
within the file to read or write, whereas the other version (read and write)
operates sequentially, with each operation implicitly using the portion of the
file immediately after the preceding operation. I’ll discuss all three possi-
bilities at least briefly, because each has its virtues. Because mmap is the
simplest procedure, I will start with it.

8.3.2 Mapping Files into Virtual Memory

The use of mmap is illustrated by the C++ program in Figures 8.4 and 8.5,
which copies the contents of one file to another. The program expects to
be given the names of the input and output files as argv[1] and argv[2],
respectively. It uses the open procedure to translate these into integer file
descriptors, fd_in and fd_out. By using fstat (as in Figure 8.3), it finds
the size of the input file. This size (info.st_size) plays three roles. One
is that the program makes the output file the same size, using ftruncate.
(Despite its name, ftruncate does not necessarily make a file shorter; it sets
the file’s size, whether by truncating it or by padding it out with extra bytes
that all have the value zero.) Another use of the input file’s size is for the
two calls to mmap, which map the input and output files into virtual memory,
with read-only and write-only protections, respectively. The returned values,
addr_in and addr_out, are the virtual addresses at which the two files start
in the process’s address space. The third use of the input file size is to tell
the library procedure memcpy how many bytes to copy from addr_in to
addr_out. The memcpy procedure is a loop that executes load and store
instructions to copy from one place in virtual memory to another. (This
loop could be written explicitly in C++, but would be less clear and likely
less efficient as well, because the library routine is very carefully tuned for
speed.)

Of course, I haven’t explained all the arguments to mmap, or many other
details. My intent here is not to provide comprehensive documentation
for these API procedures, nor to provide a complete tutorial. Instead, the
example should suffice to give you some feel for file I/O using mmap; files are
opened, then mapped into the virtual address space, and then accessed as
any other memory would be, for example, using memcpy.

The underlying idea behind virtual memory-based file access (using mmap)
is that files are arrays of bytes, just like regions of virtual address space; thus,
file access can be treated as virtual memory access. The next style of file
I/O to consider accepts half of this argument (that files are arrays of bytes)
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#include <unistd.h>

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/mman.h>

#include <stdio.h>

#include <string.h>

#include <iostream>

using namespace std;

int main(int argc, char *argv[]){

if(argc != 3){

cerr << "Usage: " << argv[0] << " infile outfile" << endl;

return -1;

}

int fd_in = open(argv[1], O_RDONLY);

if(fd_in < 0){

perror(argv[1]);

return -1;

}

struct stat info;

if(fstat(fd_in, &info) < 0){

perror("Error stating input file");

return -1;

}

void *addr_in =

mmap(0, info.st_size, PROT_READ, MAP_SHARED, fd_in, 0);

if(addr_in == MAP_FAILED){

perror("Error mapping input file");

return -1;

}

Figure 8.4: This is the first portion of cpmm.cpp, a C++ program using
virtual memory mapping to copy a file. The program is continued in the
next figure.
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int fd_out =

open(argv[2], O_RDWR | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR);

if(fd_out < 0){

perror(argv[2]);

return -1;

}

if(ftruncate(fd_out, info.st_size) < 0){

perror("Error setting output file size");

return -1;

}

void *addr_out =

mmap(0, info.st_size, PROT_WRITE, MAP_SHARED, fd_out, 0);

if(addr_out == MAP_FAILED){

perror("Error mapping output file");

return -1;

}

memcpy(addr_out, addr_in, info.st_size);

return 0;

}

Figure 8.5: This is the second portion of cpmm.cpp, a C++ program using
virtual memory mapping to copy a file. The program is continued from the
previous figure.
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but rejects the other half (that they should therefore be treated the same as
memory). In Section 8.3.4, you will see a third style of I/O, which largely
rejects even the first premise.

8.3.3 Reading and Writing Files at Specified Positions

Although convenient, accessing files as virtual memory is not without dis-
advantages. In particular, writing files using mmap raises three problems:

• The process has no easy way to control the time at which its updates
are made persistent. Specifically, there is no simple way for the process
to ensure that a data structure is written to persistent storage only
after it is in a consistent state, rather than in the middle of a series of
related updates.

• A process can write a file only if it has read permission as well as write
permission, because all page faults implicitly read from the file, even
if the page faults occur in the course of writing data into the file’s
portion of virtual memory.

• Mapping a file into a range of addresses presumes you know how big
the file is. That isn’t well suited to situations in which you don’t know
in advance how much data will be written.

For these and other reasons, some programmers prefer to leave files separate
from the virtual memory address space and use procedures in the POSIX
API that explicitly copy data from a file into memory or from memory into a
file. The pread and pwrite procedures take as arguments a file descriptor, a
virtual address in memory, a number of bytes to copy, and a position within
the file. Each procedure copies bytes starting from the specified position
in the file and the specified address in memory—pread from the file to the
memory and pwrite from the memory to the file. These procedures are
somewhat tricky to use correctly, because they may copy fewer bytes than
requested, and because they may signal error conditions that go away upon
retrying the operation. Therefore, they always need to be put in carefully
designed loops. For this reason, I will not devote space to an example here.

8.3.4 Sequential Reading and Writing

Both mmap and the pread/pwrite pair rely on the ability to access arbitrary
positions within a file; that is, they treat the file as an array of bytes. As
such, neither interface will work for other sources of input and destinations
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for output, such as keyboards and network connections. Instead, one needs
to use a sequential style of I/O, where each read or write operation takes
place not at a specified position, but wherever the last one left off.

Sequential I/O is also quite convenient for many purposes, even when
used with files. For example, suppose you give the following command in a
shell:

(ls; ps) > information

This opens the file named information for writing as the standard output
and then runs two programs in succession: ls to list the files in the cur-
rent directory and ps to list processes. The net result is that information

contains both listings, one after the other. The ps command does not need
to take any special steps to direct its output to the position in the file im-
mediately after where ls stopped. Instead, by using the sequential I/O
features of the POSIX API, each of the two processes naturally winds up
writing each byte of output to the position after the previously written byte,
whether that previous byte was written by the same process or not.

A process can perform sequential I/O using the read and write proce-
dures, which are identical to pread and pwrite, except that they do not
take an argument specifying the position within the file. Instead, each im-
plicitly is directed to read or write at the current file offset and to update
that file offset. The file offset is a position for reading and writing that is
maintained by the operating system.

For special files such as keyboard input, sequential input is intrinsic,
without needing an explicit file offset. For regular files in persistent storage,
however, the file offset is a numeric position within the file (of the same
kind pread and pwrite take as arguments) that the operating system keeps
track of behind the scenes. Whenever a file is opened, the operating system
creates an open file description, a capability-like structure that includes the
file offset, normally initialized to 0. Any file descriptors descended from
that same call to open share the same open file description. For example,
in the previous example of ls and ps writing to the information file, each
of the two processes has its own file descriptor, but they are referring to the
same open file description, and hence share the same file offset. If a process
independently calls open on the same file, however, it will get a separate file
offset.

A process implicitly increases the file offset whenever it does a read or
write of length more than zero. It can also explicitly change the file offset
using the lseek procedure. The lseek procedure can set the file offset
anywhere within the file (for a regular file). As such, a process can use
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the combination of lseek and read or write to simulate pread or pwrite.
However, this simulation is prone to races if multiple threads or processes
share the same open file description, unless they use some synchronization
mechanism, such as a mutex.

Normally lseek is used only infrequently, with sequential access pre-
dominating. For example, a process may read a whole file sequentially,
using read, and then use lseek to set it back to the beginning to read a
second time. The conceptual model is based on a tape drive, where ordinary
reads and writes progress sequentially through the tape, but rewinding or
skipping forward are also possible.

The read and write procedures share the same difficulty as pread and
pwrite: the necessity of looping until all bytes have been transferred. It
is much easier to use the I/O facilities defined in the standard libraries for
higher level programming languages, such as Java or C++. Behind the
scenes, these libraries are using read and write and doing the looping (and
other details) for you.

8.4 Disk Space Allocation

A file system is analogous to a virtual memory system, in that each uses a
level of indirection to map objects into storage locations. In virtual memory,
the mapping is from virtual addresses within address spaces to physical
addresses within memory. In a file system, the mapping is from positions
within files to locations in persistent storage. For efficiency, the mapping is
done at a coarse granularity, several kibibytes at a time. In virtual memory,
each page is mapped into a page frame; in a file system, each block of a
file is mapped into a storage block. (Recall from Section 6.3 that “kibi”
is the binary unit for 1024. You will see that blocks are typically several
kibibytes in size, spanning multiple sectors. Note, however, that transfer
speeds and sizes of hard disks are usually advertised based on powers of
ten. In particular, a 1-TB disk is way too small to store 1 TiB.)

When discussing virtual memory, I remarked that the operating system
was free to assign any unused page frame of physical memory to hold each
page of virtual memory. However, although any allocation policy would be
correct, some might cause cache memory to perform better.

Persistent storage faces a similar allocation problem, but the perfor-
mance issues are considerably more pronounced if the persistent storage
hardware is a disk drive, as I will assume in this section. A file system
has the freedom to store data in any otherwise unused disk block. The
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choices it makes determine how accesses to files translate into accesses to
disk. You have already seen that the pattern of disk access can make a huge
performance difference (three orders of magnitude). Thus, I will examine
allocation policies here more closely than I examined placement policies in
Chapter 6.

Before I get into allocation policies themselves and their embodiment in
allocation mechanisms, I will look at the key objectives for allocation: min-
imizing wasted space and time. As you will see in Sections 8.4.1 and 8.4.2,
these goals can be expressed as minimizing fragmentation and maximizing
locality.

8.4.1 Fragmentation

The word fragmentation is used in two different senses. First, consider the
definition I will not be using. For some authors, fragmentation refers to
the degree to which a file is stored in multiple noncontiguous regions of the
disk. A file that is stored in a single contiguous sequence of disk blocks
(called an extent) is not fragmented at all, by this definition. A file stored
in two separate extents would be slightly fragmented. If the file’s blocks are
individually scattered across the disk, then the file is maximally fragmented,
by this definition. A defragmentation program moves files’ blocks around
on disk so as to leave each file in a single extent. To allow future allocations
to be non-fragmented, the defragmentation program also arranges the files
so that the free space on the disk is clustered together.

The contiguity and sequentiality issues mentioned in the preceding para-
graph are important for speed of access; I will discuss them in Section 8.4.2
under the broader heading of locality. However, I will not refer to them as
fragmentation, because I will use another definition that is well established
in the operating systems field. By this alternative definition, fragmentation
concerns space efficiency. A highly fragmented disk is one in which a large
proportion of the storage capacity is unavailable for allocation to files. I will
explain in the remainder of this subsection the phenomena that cause space
to be unusable.

One source of waste is that space is allocated only in integer multiples of
some file system block size. For example, a file system might allocate space
only in units of 4 KiB. A file that is too big to fit in a single 4-KiB unit
will be allocated 8 KiB of space—even if it is only a single byte larger than
4 KiB. The unused space in the last file block is called internal fragmentation.
The amount of internal fragmentation depends not only on the desired file
sizes, but also on the file system block size. As an analogy, consider parallel
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parking in an area where individual parking spaces are marked with painted
lines, and where drivers actually respect those lines. The amount of wasted
space depends on the cars being parked, but it also depends on how far
apart the lines are painted. Larger parking spaces will generally result in
more wasted space.

The file system block size is always some multiple of the underlying disk
drive’s sector size; no file system ever subdivides the space within a single
disk sector. Generally the file system blocks span several consecutive disk
sectors; for example, eight disk sectors of 512 bytes each might be grouped
into each 4-KiB file system block. Larger file system blocks cause more
internal fragmentation, but are advantageous from other perspectives. In
particular, you will see that a larger block size tends to reduce external
fragmentation. Additionally, a larger block size implies that there are fewer
blocks to keep track of, which reduces bookkeeping overhead.

Once a space allocation request has been rounded up to the next multiple
of the block size, the operating system must locate the appropriate number
of unused blocks. In order to read or write the file as quickly as possible,
the blocks should be in a single consecutive extent. For the moment, I will
consider this to be an absolute requirement. Later, I will consider relaxing
it.

Continuing with my earlier example, suppose you need space for a file
that is just one byte larger than 4 KiB and hence has been rounded up to
two 4-KiB blocks. The new requirement of contiguity means that you are
looking for somewhere on the disk where two consecutive 4-KiB blocks are
free. Perhaps you are out of luck. Maybe the disk is only half full, but
the half that is full consists of every even-numbered file system block with
all the odd-numbered ones available for use. This situation, where there is
lots of space available but not enough grouped together in any one place,
is external fragmentation. So long as you insist on contiguous allocation,
external fragmentation is another cause of wasted space: blocks that are
free for use, but are too scattered to be usable.

On the surface, it appears that external fragmentation would result only
from very strange circumstances. My example, in which every second file
system block is occupied, would certainly fit that description. To start with,
it implies that you allocated lots of small files and now suddenly want to
allocate a larger file. Second, it implies that you either were really dumb in
choosing where those small files went (skipping every other block), or had
phenomenally bad luck in the user’s choice of which files to delete.

However, external fragmentation can occur from much more plausible
circumstances. In particular, you can wind up with only small gaps of space
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available even if all the allocations have been for much larger amounts of
space and even if the previous allocations were done without leaving silly
gaps for no reason.

For a small scenario that illustrates the phenomenon, consider a disk that
has room for only 14 file system blocks. Suppose you start by allocating three
four-block files. At this point, the space allocation might look as follows:

file1 file2 file3

0 4 8 12 14

Suppose file2 is now deleted, resulting in a four-block gap, with another two
blocks free at the end of the disk:

file1 file3

0 4 8 12 14

If, at this point, a three-block file (file4) is created, it can go into the four-
block gap, leaving one block unused:

file1 file3file4

0 4 7 8 12 14

Now there are three unused blocks, but there is no way to satisfy another
three-block allocation request, because the three unused blocks are broken
up, with one block between files 4 and 3, and two more blocks at the end of
the disk.

Notice that you wound up with a one-block gap not because a one-block
file was created and later deleted (or because of stupid allocation), but
because a four-block file was replaced by a three-block file. The resulting
gap is the difference in the file sizes. This means that even if a disk is used
exclusively for storing large files, it may still wind up with small gaps, which
cannot hold any large files. This is the fundamental problem of external
fragmentation.

Returning to the parallel parking analogy, consider an area where no
parking spaces are marked on the pavement, leaving drivers to allocate their
own spaces. Even if they are courteous enough not to leave any pointless
gaps, small gaps will arise as cars of varying sizes come and go. A large car
may vacate a space, which is then taken by a smaller car. The result is a
gap equal to the difference in car sizes, too small for even the smallest cars
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to use. If this situation happens repeatedly at different spots along a block,
there may be enough total wasted space to accommodate a car, but not all
in one place.

Earlier, I mentioned that increasing the file system block size, which in-
creases internal fragmentation, decreases external fragmentation. The rea-
son for this is that with a larger block size, there is less variability in the
amount of space being allocated. Files that might have different sizes when
rounded up to the next kibibyte (say, 14 KiB and 15 KiB) may have the same
size when rounded to the next multiple of 4 KiB (in this case, 16 KiB and
16 KiB). Reduced variability reduces external fragmentation; in the extreme
case, no external fragmentation at all occurs if the files are all allocated the
same amount of space.

Suppose you relax the requirement that a file be allocated a single extent
of the disk. Using file metadata, it is possible to store different blocks of
the file in different locations, much as a virtual memory address space can
be scattered throughout physical memory. Does this mean that external
fragmentation is a nonissue? No, because for performance reasons, you will
still want to allocate the file contiguously as much as possible. Therefore,
external fragmentation will simply change from being a space-efficiency issue
(free space that cannot be used) to a time-efficiency issue (free space that
cannot be used without file access becoming slower). This gets us into the
next topic, locality.

8.4.2 Locality

Recall that disks provide their fastest performance when asked to access a
large number of consecutive sectors in a single request at a location nearby
to the previous access request. Most file system designers have interpreted
these conditions for fast access as implying the following locality guidelines
for space allocation:

1. The space allocated for each file should be broken into as few extents
as possible.

2. If a file needs to be allocated more than one extent, each extent should
be nearby to the previous one.

3. Files that are commonly used in close succession (or concurrently)
should be placed near one another.

The connection between fast access and these three guidelines is based
on an implicit assumption that the computer system’s workload largely con-
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sists of accessing one file at a time and reading or writing each file in its
entirety, from beginning to end. In some cases, this is a reasonable approx-
imation to the truth, and so the preceding locality guidelines do result in
good performance. However, it is important to remember that the guidelines
incorporate an assumption about the workload as well as the disk perfor-
mance characteristics. For some workloads, a different allocation strategy
may be appropriate. In particular, as computing workloads are consolidated
onto a smaller number of computers (using techniques such as virtualization,
as discussed in Section 7.5.2), file accesses become more jumbled.

As an example of a different allocation strategy that might make sense,
Rosenblum and Ousterhout suggested that blocks should be allocated space
on disk in the order they are written, without regard to what files they
belong to or what positions they occupy within those files. By issuing a large
number of consecutive writes to the disk in a single operation, this allows
top performance for writing. Even if the application software is concurrently
writing to multiple files, and doing so at random positions within those files,
the write operations issued to disk will be optimal, unlike with the more
conventional file layout. Of course, read accesses will be efficient only if
they are performed in the same order as the writes were. Fortunately, some
workloads do perform reads in the same order as writes, and some other
workloads do not need efficient read access. In particular, the efficiency of
read access is not critical in a workload that reads most disk blocks either
never or repeatedly. Those blocks that are never read are not a problem,
and those that are read repeatedly need only suffer the cost of disk access
time once and can thereafter be kept in RAM.

Returning to the more mainstream strategy listed at the beginning of
this subsection, the primary open question is how to identify files that are
likely to be accessed contemporaneously, so as to place them nearby to one
another on disk. One approach, used in UNIX file systems, is to assume
that files are commonly accessed in conjunction with their parent directory
or with other (sibling) files in the same directory. Another approach is to not
base the file placement on assumptions, but rather on observed behavior.
(One assumption remains: that future behavior will be like past behavior.)
For example, Microsoft introduced a feature into Windows with the XP
version, in which the system observes the order of file accesses at system
boot time and also at application startup time, and then reorganizes the
disk space allocation based on those observed access orders. Mac OS X does
something similar as of version 10.3: it measures which files are heavily used
and groups them together.
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8.4.3 Allocation Policies and Mechanisms

Having seen the considerations influencing disk space allocation (fragmen-
tation and locality), you are now in a better position to appreciate the
specific allocation mechanism used by any particular file system and the
policy choices embodied in that mechanism. The full range of alternatives
found in different file systems is too broad to consider in any detail here,
but I will sketch some representative options.

Each file system has some way of keeping track of which disk blocks are
in use and which are free to be allocated. The most common representation
for this information is a bitmap, that is, an array of bits, one per disk block,
with bit i indicating whether block i is in use. With a bitmap, it is easy
to look for space in one particular region of the disk, but slow to search an
entire large disk for a desired size extent of free space.

Many UNIX and Linux file systems use a slight variant on the bitmap
approach. Linux’s ext3fs file system can serve as an example. The overall
disk space is divided into modest-sized chunks known as block groups. On
a system with 4-KiB disk blocks, a block group might encompass 128 MiB.
Each block group has its own bitmap, indicating which blocks within that
group are free. (In Exercise 8.8, you can show that in the example given,
each block group’s bitmap fits within a single block.) Summary information
for the file system as a whole indicates how much free space each block group
has, but not the specific location of the free space within the block groups.
Thus, allocation can be done in two steps: first find a suitable block group
using the summary information, and then find a suitable collection of blocks
within the block group, using its bitmap.

I remarked earlier that UNIX and Linux file systems generally try to
allocate each file near its parent directory. In particular, regular files are
placed in the same block group as the parent directory, provided that there
is any space in that group. If this rule were also followed for subdirectories,
the result would be an attempt to cram the entire file system into one block
group. Therefore, these file systems use an alternative rule to choose a block
group for a subdirectory.

When creating a subdirectory, early versions of ext3fs and similar file
systems selected a block group containing a lot of free space. This spread
the directories, with their corresponding files, relatively evenly through the
whole disk. Because each new directory went into a block group with lots
of free space, there was a good chance that the files contained in that di-
rectory would fit in the same block group with it. However, traversing a
directory tree could take a long time with these allocation policies, because
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each directory might be nowhere near its parent directory.
Therefore, more recent versions of ext3fs and similar file systems have

used a different allocation policy for directories, developed by Orlov. A
subdirectory is allocated in the parent directory’s block group, provided
that it doesn’t get too crowded. Failing that, the allocation policy looks
through the subsequent block groups for one that isn’t too crowded. This
preserves locality across entire directory trees without stuffing any block
group so full of directories that the corresponding files won’t fit. The result
can be significant performance improvements for workloads that traverse
directory trees.

Once a file system decides to locate a file within a particular block group,
it still needs to allocate one or more extents of disk blocks to hold the file’s
data. (Hopefully those extents will all lie within the chosen block group,
although there needs to be a way for large files to escape from the confines
of a single block group.)

The biggest challenge in allocating extents is knowing how big an extent
to allocate. Some older file systems required application programmers to
specify each file’s size at the time the file was created, so that the system
could allocate an extent of corresponding size. However, modern systems
don’t work this way; instead, each file grows automatically to accommodate
the data written into it.

To meet this challenge, modern operating systems use a technique known
as delayed allocation. As background, you need to understand that operat-
ing systems do not normally write data to disk the moment an application
program issues a write request. Instead, the data is stored in RAM and
written back to disk later. This delay in writing yields two options for when
the disk space is allocated: when the data goes into RAM or later when it
gets written to disk.

Without delayed allocation, the operating system needs to choose a disk
block to hold the data at the time it goes into RAM. The system tags the
data in RAM with the disk block in which that data belongs. Later, the
system writes the data out to the specified location on disk. This approach
is simple, but requires the operating system to allocate space for the first
block of data as soon as it is generated, before there is any clue how many
more blocks will follow.

Delayed allocation puts off the choice of disk block until the time of
actually writing to disk; the data stored in RAM is tagged only with the file
it should be written to and the position within that file. Now the operating
system does not need to guess how much data a program is going to write
at the time when it generates the first block. Instead, it can wait and see
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how much data gets written and allocate an extent that size.
Once the operating system knows the desired extent size, it needs to

search the data structure that records the available space. Bitmaps (whether
in individual block groups or otherwise) are not the only option for tracking
free space. The XFS file system, which was particularly designed for large
file systems, takes an alternative approach. It uses balanced search trees,
known as B-trees, to track the free extents of disk space. One B-tree stores
the free extents indexed by their location while another indexes them by their
size. That way, XFS can quickly locate free space near a specified location
on disk or can quickly locate a desired amount of space. Technically, the
trees used by XFS are a slight variant of B-trees, known as B+-trees. I’ll
describe this data structure in Section 8.5.1.

With free extents indexed by size in a B+-tree, the XFS allocator can
naturally use a best-fit policy, where it finds the smallest free extent bigger
than the desired size. (If the fit is not exact, the extra space can be broken
off and left as a smaller free extent.) With a bitmap, on the other hand, the
most natural allocation policy is first-fit, the policy of finding the first free
extent that is large enough. Each policy has its merits; you can compare
them in Exercise 8.9.

8.5 Metadata

You have seen that a file system is analogous to a virtual memory system.
Each has an allocation policy to select concrete storage locations for each
chunk of data. Continuing the analogy, I will now explain the metadata that
serves as the analog of page tables. Recall that in a system with separate
address spaces, each process has its own page table, storing the information
regarding which page frame holds that process’s page 0, page 1, and so forth.
Similarly, each file has its own metadata storing the information regarding
which disk block holds that file’s block 0, block 1, and so forth. You will
see that, as with page tables, there are several choices for the data structure
holding this mapping information. I discuss these alternative structures in
Section 8.5.1.

Metadata is data about data. Information regarding where on disk the
data is stored is one very important kind of metadata. However, I will
also more briefly enumerate other kinds. First, in Section 8.5.2, I will revisit
access control, a topic I considered from another perspective in Chapter 7. In
Section 8.5.2, the question is not how access control information is enforced
during access attempts, but how it is stored in the file system. Second, I
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will look in Section 8.5.3 at the other more minor, miscellaneous kinds of
metadata (beyond data location and access control), such as access dates
and times.

Some authors include file names as a kind of metadata. This makes sense
in those file systems where each file has exactly one name. However, most
modern file systems do not fit this description; a file might have no names,
or might have multiple names. Thus, you are better off thinking of a name
not as a property of a file, but as a route that can lead to a file. Similarly,
in other persistence services, data may be accessed through multiple routes,
such as database indexes. Therefore, I will not include naming in this section
on metadata, instead including it in Section 8.6 on directories and indexing.

8.5.1 Data Location Metadata

The simplest representation for data location metadata would be an array of
disk block numbers, with element i of the array specifying which disk block
holds block i of the file. This would be analogous to a linear page table.
Traditional UNIX file systems (including Linux’s ext2fs and ext3fs) use this
approach for small files. Each file’s array of disk block numbers is stored
in the file’s metadata structure known as its inode (short for index node).
For larger files, these file systems keep the inodes compact by using indirect
blocks, roughly analogous to multilevel page tables. I discuss the traditional
form of inodes and indirect blocks next. Thereafter, I discuss two alter-
natives used in some more modern file systems: extent maps, which avoid
storing information about individual blocks, and B+-trees, which provide
efficient access to large extent maps.

Inodes and Indirect Blocks

When UNIX was first developed in the early 1970s, one of its many inno-
vative features was the file system design, a design that has served as the
model for commonly used UNIX and Linux file systems to the present day,
including Linux’s ext3fs. The data-location metadata in these systems is
stored in a data structure that can better be called expedient than elegant.
However, the structure is efficient for small files, allows files to grow large,
and can be manipulated by simple code.

Each file is represented by a compact chunk of data called an inode. The
inode contains the file’s metadata if the file is small or an initial portion
of the metadata if the file is large. By allowing large files to have more
metadata elsewhere (in indirect blocks), the inodes are kept to a small fixed
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size. Each file system contains an array of inodes, stored in disk blocks
set aside for the purpose, with multiple inodes per block. Each inode is
identified by its position in the array. These inode numbers (or inumbers)
are the fundamental identifiers of the files in a file system; essentially, the
files are identified as file 0, file 1, and so forth, which indicate the files with
inodes in position 0, 1, and so forth. Later, in Section 8.6, you’ll see how
file names are mapped into inode numbers.

Each inode provides the metadata for one file. The metadata includes
the disk block numbers holding that file’s data, as well as the access per-
missions and other metadata. These categories of metadata are shown in
Figure 8.6. In this simplified diagram, the inode directly contains the map-
ping information specifying which disk block contains each block of the file,
much like a linear page table. Recall, however, that inodes are a small, fixed
size, whereas files can grow to be many blocks long. To resolve this con-
flict, each inode directly contains the mapping information only for the first
dozen or so blocks. (The exact number varies between file systems, but is
consistent within any one file system.) Thus, a more realistic inode picture
is as shown in Figure 8.7.

Before I go into detail on how further disk blocks are indirectly accessed,
I should emphasize one aspect of the inode design. The low-numbered blocks
of a file are mapped in the exact same way (directly in the inode) regardless
of whether they are the only blocks in a small file or the first blocks of a
large file. This means that large files have a peculiar asymmetry, with some
blocks more efficiently accessible than others. The advantage is that when
a file grows and transitions from being a small file to being a large one, the
early blocks’ mapping information remains unchanged.

Because most files are small, the inodes are kept small, a fraction of a

file block 0’s disk block number

file block 1’s disk block number

file block 2’s disk block number
...

access permissions

other metadata

Figure 8.6: This initial approximation of an inode shows the principle cat-
egories of metadata. However, this diagram is unrealistic in that the list of
disk block numbers seems to be unlimited, whereas actual inodes have only
a limited amount of space.
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file block 0’s disk block number
...

file block 11’s disk block number

indirect access to file block 12 through the end of the file

access permissions

other metadata

Figure 8.7: In this limited-size inode, blocks from number 12 to the end of
the file are indirectly referenced.

block in size. (If inodes were full blocks, the overhead for single-block files
would be 100 percent.) For those files large enough to overflow an inode,
however, one can be less stingy in allocating space for metadata. Therefore,
if the system needs more metadata space, it doesn’t allocate a second inode;
it allocates a whole additional disk block, an indirect block. This provides
room for many more block numbers, as shown in Figure 8.8. The exact
number of additional block numbers depends on how big blocks and block
numbers are. With 4-KiB blocks and 4-byte block numbers, an indirect block
could hold 1 Ki block numbers (that is, 1024 block numbers), as shown in
the figure. This kind of indirect block is more specifically called a single
indirect block, because it adds only a single layer of indirection: the inode
points to it, and it points to data blocks.

In this example with 4-KiB blocks, the single indirect block allows you
to accommodate files slightly more than 4 MiB in size. To handle yet-
larger files, you can use a multilevel tree scheme, analogous to multilevel

Inode Indirect block
file block 0’s disk block number file block 12’s disk block number

...
...

file block 11’s disk block number file block 1035’s disk block number
indirect block’s block number

access permissions
other metadata

Figure 8.8: If an inode were used with a single indirect block, the block
numbers would be stored as shown here. Note that the indirect block is
actually considerably larger than the inode, contrary to its appearance in
the figure.
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page tables. The inode can contain a block number for a double indirect
block, which contains block numbers for many more single indirect blocks,
each of which contains many data block numbers. Figure 8.9 shows this
enhancement to the inode design, which retains the dozen direct blocks and
the original single indirect block, while adding a double indirect block.

Because the double indirect block points at many indirect blocks, each
of which points at many data blocks, files can now grow quite large. (In
Exercise 8.10, you can figure out just how large.) However, many UNIX file
systems go one step further by allowing the inode to point to a triple indirect
block as well, as shown in Figure 8.10. Comparing this with multilevel page
tables is illuminating; the very unbalanced tree used here allows a small,
shallow tree to grow into a large, deeper tree in a straightforward way. Later
you’ll see that B+-trees grow somewhat less straightforwardly, but without
becoming so imbalanced.

Having presented this method of mapping file blocks into disk blocks, I
will shortly turn to an alternative that avoids storing information on a per-
block basis. First, however, it is worth drawing one more analogy with page
tables. Just as a page table need not provide a page frame number for every
page (if some pages are not in memory), an inode or indirect block need not
provide a disk block number for every block of the file. Some entries can be
left blank, typically by using some reserved value that cannot be mistaken
for a legal disk block number. This is valuable for sparse files, also known
as files with holes. A sparse file has one or more large portions containing
nothing but zeros, usually because those portions have never been written.
By not allocating disk blocks for the all-zero file blocks, the file system can
avoid wasting space and time.

Extent Maps

You have seen that traditional inodes and indirect blocks are based around
the notion of a block map, that is, an array specifying a disk block number
for each file block. A block map is completely general, in that each file block
can be mapped to any disk block. File block n can be mapped somewhere
totally different on disk from file block n−1. Recall, however, that file system
designers prefer not to make use of this full generality. For performance
reasons, consecutive file blocks will normally be allocated consecutive disk
blocks, forming long extents. This provides the key to a more efficient data
structure for storing the mapping information.

Suppose you have a file that is 70 blocks long and that occupies disk
blocks 1000–1039 and 1200–1229. A block map would contain each one
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Inode Single indirect block
file block 0’s disk block number file block 12’s disk block number

...
...

file block 11’s disk block number file block 1035’s disk block number
single indirect block’s number
double indirect block’s number

access permissions
other metadata

Double indirect block Indirect block 1
indirect block 1’s block number file block 1036’s disk block number

...
...

indirect block 1024’s block number file block 2059’s disk block number

Indirect blocks 2–1024: similar to indirect block 1

Figure 8.9: If an inode were used with single and double indirect blocks, the
block numbers would be stored as shown here.

......

...... ...

...... ... ...

Inode

A few data blocks Single indirect Double indirect Triple indirect

Many data blocks Many indirect
blocks

Tons of data blocks

Many double
indirect blocks

Tons of indirect blocks

Astronomically
many data blocks

...

... ... ...

Figure 8.10: The full structure of a file starts with an inode and contin-
ues through a tree of single, double, and triple indirect blocks, eventually
reaching each of the data blocks.
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of those 70 disk block numbers. An extent map, on the other hand, would
contain only two entries, one for each of the file’s extents, just as the opening
sentence of this paragraph contains two ranges of block numbers. Each
entry in the extent map needs to contain enough information to describe
one extent. There are two alternatives for how this can be done:

• Each entry can contain the extent’s length and starting disk block
number. In the example, the two extent map entries would be (40, 1000)
and (30, 1200). These say the file contains 40 blocks starting at disk
block 1000 and 30 blocks starting at disk block 1200.

• Each entry can contain the extent’s length, starting file block num-
ber, and starting disk block number. In the example, the two extent
map entries would be (40, 0, 1000) and (30, 40, 1200). The first entry
describes an extent of 40 blocks, starting at position 0 in the file and
occupying disk blocks starting with number 1000. The second entry
describes an extent of 30 blocks, starting at position 40 in the file and
occupying disk blocks starting with number 1200.

The first approach is more compact. The second approach, however, has the
advantage that each extent map entry can be understood in isolation, with-
out needing to read the preceding extent map entries. This is particularly
useful if the extent map is stored in a B+-tree, as I will discuss subsequently.
For simplicity, I will assume the second approach in the remainder of my
discussion, though there are systems that use each.

At first, it may not be obvious why extent maps are a big improvement.
A typical block map system might use a 4-byte block number to refer to
each 4-KiB block. This is less than one-tenth of one percent space overhead,
surely affordable with today’s cheap disk storage. What reason do file system
designers have to try to further reduce such an already small overhead? (I
will ignore the possibility that the extent map takes more space than the
block map, which would happen only if the file is scattered into lots of tiny
extents.)

The key fact is that disk space efficiency turns into time efficiency, which
is a much more precious commodity. Indirect blocks result in extra disk I/O
operations. Consider, for example, reading a file that is stored in a single
20-block extent. With the block map approach, the file system would need
to do at least two disk read operations: one to read the single indirect block
and one to read the data blocks. This assumes the inode is already cached
in memory, having been read in along with other inodes in its disk block,
and that the file system is smart enough to read all 20 data blocks in a single
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operation. With an extent map, the entire mapping information would fit in
the inode; if you again assume the inode is cached, a single read operation
suffices. Thus, the system can read files like this twice as fast. Admittedly,
this is a somewhat artificial best-case example. However, even with realistic
workloads, a significant speedup is possible.

Several modern file systems use extent maps, including Microsoft Win-
dows’s NTFS, Mac OS X’s HFS Plus, and XFS, which was ported into Linux
from SGI’s IRIX version of UNIX. For files that have only a handful of ex-
tents (by far the most common case), all three store the sequence of extent
map entries in the inode or (in Windows and Mac OS X) in the correspond-
ing inode-like structure. The analogs of inodes in NTFS are large enough
(1 KiB) that they can directly store entire extent maps for most files, even
those with more than a few extents. The other two file systems use smaller
inodes (or inode-like structures) and so provide an interesting comparison
of techniques for handling the situation where extra space is needed for a
large extent map.

HFS Plus takes an approach quite reminiscent of traditional UNIX in-
odes: the first eight extent map entries are stored directly in the inode-like
structure, whether they are the only ones or just the first few of a larger
number. Any additional entries are stored elsewhere, in a single B+-tree that
serves for all the files, as I will describe subsequently. XFS, on the other
hand, stores all the extent map entries for a file in a file-specific B+-tree;
the space in the inode is the root node of that tree. When the tree contains
only a few extents, the tree is small enough that the root of the tree is also
a leaf, and so the extents are directly in the inode, just as with HFS Plus.
When the extent map grows larger, however, all the entries move down into
descendant nodes in the tree, and none are left in the inode, unlike HFS
Plus’s special treatment of the first eight.

B-Trees

The B-tree data structure is a balanced search tree structure generally con-
figured with large, high-degree nodes forming shallow, bushy trees. This
property makes it well suited to disk storage, where transferring a large block
of data at once is efficient (hence, large nodes), but performing a succession
of operations is slow (hence, a shallow tree). You may have encountered B-
trees before, in which case my summary will be a review, with the exception
of my description of specific applications for which this structure is used.

Any B-tree associates search keys with corresponding values, much like a
dictionary associates words with their definitions or a phone book associates
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names with phone numbers. The keys can be textual strings organized in
alphabetic order (as in these examples) or numbers organized by increasing
value; all that is required is that there is some way to determine the relative
order of two keys.

The B-tree allows entries to be efficiently located by key, as well as
inserted and deleted. Thus far, the same could be said for a hash table
structure, such as is used for hashed page tables. Where B-trees (and other
balanced search trees) distinguish themselves is that they also provide effi-
cient operations based on the ordering of keys, rather than just equality of
keys. For example, if someone asks you to look up “Smit” in a phone book,
you could reply, “There is no Smit; the entries skip right from Smirnoff to
Smith.” You could do the same with a B-tree, but not with a hash table.

This ability to search for neighbors of a key, which need not itself be
present in the tree, is crucial when B-trees are used for extent maps. Some-
one may want information about the extent containing file block 17. There
may be no extent map entry explicitly mentioning 17; instead, there is an
entry specifying a 10-block extent starting with file block 12. This entry can
be found as the one with the largest key that is less than or equal to 17.

B-trees can play several different roles in persistence systems. In Sec-
tion 8.6, you’ll see their use for directories of file names and for indexes of
database contents; both are user-visible data access services. In the cur-
rent section, B-trees play a more behind-the-scenes role, mapping positions
within a file to locations on disk. Earlier, in Section 8.4.3, you saw another
related use, the management of free space for allocation. The data structure
fundamentals are the same in all cases; I choose to introduce them here, be-
cause extent maps seem like the simplest application. Free space mapping
is complicated by the dual indexing (by size and location), and directories
are complicated by the use of textual strings as keys.

You are probably already familiar with binary search trees, in which
each tree node contains a root key and two pointers to subtrees, one with
keys smaller than the root key, and one with keys larger than the root key.
(Some convention is adopted for which subtree contains keys equal to the
root key.) B-tree nodes are similar, but rather than using a single root key
to make a two-way distinction, they use N root keys to make an N + 1 way
distinction. That is, the root node contains N keys (in ascending order)
and N + 1 pointers to subtrees, as shown in Figure 8.11. The first subtree
contains keys smaller than the first root key, the next subtree contains keys
between the first and second root keys, and so forth. The last subtree
contains keys larger than the last root key.

If a multi-kibibyte disk block is used to hold a B-tree node, the value
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Key1  Key2  …  KeyN

� Key1 � KeyN

� Key1
and

� Key2

� Key2
and

� Key3

…

Figure 8.11: A B-tree node contains N keys and N + 1 pointers to the
subtrees under it. Each subtree contains keys in a particular range.

of N can be quite large, resulting in a broad, shallow tree. In fact, even
if a disk block were only half full with root keys and subtree pointers, it
would still provide a substantial branching factor. This observation provides
the inspiration for the mechanism used to maintain B-trees as entries are
inserted.

Each node is allowed to be anywhere between half full and totally full.
This flexibility means one can easily insert into a node, so long as it is less
than full. The hard case can be handled by splitting nodes. As a special
exception, the root node is not required to be even half full. This exception
allows you to build a tree with any number of entries, and it adds at most
one level to the height of the tree.

Consider, for example, inserting one more entry into an already full node.
After insertion, you have N + 1 keys but only room for N . The node can be
replaced with two nodes, one containing the N/2 smallest keys and the other
the N/2 largest keys. Thus, you now have two half-full nodes. However, you
have only accounted for N of the N+1 keys; the median key is still left over.
You can insert this median key into the parent node, where it will serve as
the divider between the two half-full nodes, as shown in Figure 8.12.

When you insert the median key into the parent node, what if the parent
node is also full? You split the parent as well. The splitting process can
continue up the tree, but because the tree is shallow, this won’t take very
long. If the node being split has no parent, because it is the root of the
tree, it gains a new parent holding just the median key. In this way the tree
grows in height by one level.

In Bayer and McCreight’s 1972 paper introducing B-trees, they suggested
that each node contain key/value pairs, along with pointers to subtrees.
Practical applications today instead use a variant, sometimes called B+-
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6 8 12 18

… 5 12 20 …

16 186 8Full node

Parent Parent

Two half-full nodes

Before inserting 16 After inserting 16

Figure 8.12: Inserting 16 into the illustrated B-tree, which has node-capacity
4, causes a node to split, with the median key moving into the parent.

trees. In a B+-tree, the nonleaf nodes contain just keys and pointers to
subtrees, without the keys having any associated values. The keys in these
nodes are used solely for navigation to a subtree. The leaves contain the
key/value pairs that are the actual contents of the data structure. For
example, a small B+-tree of extent map entries might be organized as shown
in Figure 8.13.

This sort of B+-tree can store the extent map for a single file, as is done
in XFS. For Mac OS X’s HFS Plus, a slightly different approach is needed,
because all files’ extent maps are combined into a single B+-tree. (Recall,
though, that the first eight extents of each file are not included in this tree.)

Each entry in this file system’s B+-tree describes an extent map entry
for some position within some file. That is, the entry contains a file number
(analogous to an inode number), a starting block number within the file, a
length in blocks, and a starting disk block number. The concatenation of
file number and starting file block number serves as the key. That way, all
the entries for a particular file appear consecutively in the tree, in order by
their position within the file.

The insertion algorithm for B+-trees is a slight variant of the one for
pure B-trees; you can work through the differences in Exercise 8.13.

8.5.2 Access Control Metadata

The complexity of the data structures storing access control information is
directly related to the sophistication of the protection system. Recall that
the POSIX specification, followed by UNIX and Linux, provides for only
fixed-length access control lists (ACLs), with permissions for a file’s owner,
owning group, and others. This information can be stored compactly in
the file’s inode. Microsoft Windows, on the other hand, allows much more
general ACLs. Thus, the designers of NTFS have faced a more interesting
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Figure 8.13: This small B+-tree extent map contains information that can
be used to find each extent’s range of file block numbers and range of disk
block numbers. Because the tree is a B+-tree rather than a B-tree, all the
extents are described in the leaves, with the nonleaf node containing just
navigational information.

challenge and, in fact, have revisited their design decision, as you will see.
For POSIX-compliant access control, an inode can contain three num-

bers: one identifying the file’s owning user, one identifying the file’s owning
group, and one containing nine bits, representing the rwx permissions for
the owning user, the owning group, and other users. This third number,
containing the nine permission bits, is called the file’s mode. Rather than
waste all but nine bits in the mode, the others are used to encode additional
information, such as whether the file is a regular file, a directory, an I/O
device, and so forth. Figure 8.14 shows how the permissions can be de-
termined by extracting an inode’s mode using the stat system call. (This
system call differs only slightly from fstat, which you saw earlier. The
file is specified by name, rather than by a numerical file descriptor.) If you
compile this C++ program and call the resulting executable stater, then
a command like ./stater somefile should produce information you could
also get with ls -l somefile.

Early versions of NTFS stored the full ACL for each file independently.
If the ACL was small enough to fit in the inode-like structure, it was stored
there. Otherwise, it was stored in one or more extents of disk blocks, just
like the file’s data, and the inode-like structure contained an extent map for
the ACL.

As of Windows 2000, Microsoft redesigned NTFS to take advantage of
the fact that many files have identical ACLs. The contents of the ACLs are
now stored in a centralized database. If two files have identical ACLs, they
can share the same underlying representation of that ACL.
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#include <unistd.h>

#include <time.h>

#include <sys/stat.h>

#include <stdio.h>

#include <iostream>

using namespace std;

static void print_bit(int test, char toPrint){

if(test)

cout << toPrint;

else

cout << ’-’;

}

int main(int argc, char *argv[]){

if(argc != 2){

cerr << "Usage: " << argv[0] << " filename" << endl;

return -1;

}

struct stat info;

if(stat(argv[1], &info) < 0){

perror(argv[1]);

return -1;

}

print_bit(info.st_mode & S_IRUSR, ’r’);

print_bit(info.st_mode & S_IWUSR, ’w’);

print_bit(info.st_mode & S_IXUSR, ’x’);

print_bit(info.st_mode & S_IRGRP, ’r’);

print_bit(info.st_mode & S_IWGRP, ’w’);

print_bit(info.st_mode & S_IXGRP, ’x’);

print_bit(info.st_mode & S_IROTH, ’r’);

print_bit(info.st_mode & S_IWOTH, ’w’);

print_bit(info.st_mode & S_IXOTH, ’x’);

cout << endl;

return 0;

}

Figure 8.14: This C++ program, stater.cpp, uses stat to retrieve ac-
cess control metadata for whichever file is specified by the command-line
argument argv[1].
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8.5.3 Other Metadata

Because files can be of any length, not just a multiple of the block size,
each inode (or equivalent) contains the file’s size in bytes. (The program in
Figure 8.3 on page 344 showed how you can retrieve this information.) Other
metadata is much more system-specific. For example, POSIX specifies that
each file has three time stamps, recording when the file was last accessed,
last written, and last modified in any way. Modification includes not only
writing the data, but also making changes in permission and other metadata
attributes. NTFS records whether the file should be hidden in ordinary
directory listings. HFS Plus has many metadata attributes supporting the
graphical user interface; for example, each file records its icon’s position.

One metadata attribute on POSIX systems connects with file linking,
that is, the use of multiple names for one file, which is the topic of Sec-
tion 8.6.3. Each file’s inode contains a count of how many names refer to
the file. When that count reaches zero and the file is not in use by any
process, the operating system deletes the file. The operation users normally
think of as deleting a file actually just removes a name; the underlying file
may or may not be deleted as a consequence.

8.6 Directories and Indexing

Having seen how file systems provide the storage for files, you are now
ready to consider how those systems allow files to be located by name.
As a similar question regarding database systems, you can consider how
those systems provide indexed lookup. In Section 8.6.1, I set the stage for
this discussion by presenting a common framework for file directories and
database indexes, showing the ways in which they differ. In Section 8.6.2,
I show how the separation between file directories and database indexes
is currently weakening with the introduction of indexing mechanisms for
locating files. Having shown the basic principles of both directories and
indexes, I use Section 8.6.3 to dig into one particular aspect of file directories
in more detail: the ways in which multiple names can refer to a single file.
Finally, in Section 8.6.4, I take you behind the scenes to look at typical data
structures used for directories and indexes.

8.6.1 File Directories Versus Database Indexes

Traditionally, file systems include directories, which provide access to files
by name. Databases, on the other hand, include indexes, which provide
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access to entries in the database based on a portion of the contents. This
clean distinction between file systems and databases is currently blurring,
as alternative file-access techniques based on indexes become available. In
particular, Apple introduced such a feature in Mac OS X version 10.4 under
the name Spotlight. I describe Spotlight in Section 8.6.2. Microsoft subse-
quently included a related feature in Windows Vista. This trend makes it
even more important to see what directories and indexes have in common
and what distinguishes them.

Both directories and indexes provide a mapping from keys to objects.
The keys in a directory are names, which are external to the object being
named. You can change the contents of a file without changing its name
or change the name without changing the contents. In contrast, the keys
in an index are attributes of the indexed objects, and so are intrinsic to
those objects. For example, an index on a database table of chapters might
allow direct access to the row with title "Files and Other Persistent

Storage" or with the number 8. If the row were updated to show a change
in this chapter’s title or number, the index would need to be updated ac-
cordingly. Similarly, any update to the index must be in the context of a
corresponding change to the indexed row; it makes no sense to say that you
want to look up the row under chapter number 1, but there find that the
real chapter number is still 8.

Each name in a directory identifies a single file. Two files may have the
same name in different directories, but not in the same directory. Database
indexes, on the other hand, can be either for a unique attribute or a non-
unique one. For example, it may be useful to index a table of user accounts
by both the unique login name and the non-unique last name. The unique
index can be used to find the single record of information about the user
who logs in as "jdoe", whereas the non-unique index can be used to find all
the records of information about users with last name "Doe". An index can
also use a combination of multiple attributes as its key. For example, a uni-
versity course catalog could have a unique index keyed on the combination
of department and course number.

The final distinction between file directories and database indexes is the
least fundamental; it is the kind of object to which they provide access.
Traditionally, directories provide access to entire files, which would be the
analog of tables in a relational database. Indexes, on the other hand, provide
access not to entire tables, but rather to individual rows within those tables.
However, this distinction is misleading for two reasons:

• Database systems typically have a meta-table that serves as a catalog
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of all the tables. Each row in this meta-table describes one table.
Therefore, an index on this meta-table’s rows is really an index of the
tables. Access to its rows is used to provide access to the database’s
tables.

• As I mentioned earlier, operating system developers are incorporating
indexes in order to provide content-based access to files. This is the
topic of Section 8.6.2.

8.6.2 Using Indexes to Locate Files

As I have described, files are traditionally accessed by name, using directo-
ries. However, there has been considerable interest recently in using indexes
to help users locate files by content or other attributes. Suppose that I
could not remember the name of the file containing this book. That would
not be a disaster, even leaving aside the possibility that the world might be
better off without the book. I could search for the file in numerous ways;
for example, it is one of the few files on my computer that has hundreds of
pages. Because the Mac OS X system that I am using indexes files by page
count (as well as by many other attributes), I can simply ask for all files
with greater than 400 pages. Once I am shown the five files meeting this
restriction, it is easy to recognize the one I am seeking.

The index-based search feature in Mac OS X, which is called Spotlight,
is not an integral component of the file system in the way directories and
filenames are. Instead, the indexing and search are provided by processes
external to the operating system, which can be considered a form of mid-
dleware.

The file system supports the indexing through a generic ability to notify
processes of events such as the creation or deletion of a file, or a change in
a file’s contents. These events can be sent to any process that subscribes to
them and are used for other purposes as well, such as keeping the display of
file icons up to date. The Spotlight feature uses it to determine when files
need reindexing. When I save out a new version of my book, the file system
notifies Spotlight that the file changed, allowing Spotlight to update indexes
such as the one based on page count. Unlike file directories, which are stored
in a special data structure internal to the file system, the indexes for access
based on contents or attributes like page counts are stored in normal files in
the /.Spotlight-V100 directory.

Apple refers to the indexed attributes (other than the actual file con-
tents) as metadata. In my book example, the number of pages in a docu-
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ment would be one piece of metadata. This usage of the word “metadata” is
rather different from its more traditional use in file systems. Every file has
a fixed collection of file system metadata attributes, such as owner, permis-
sions, and time of last modification. By contrast, the Spotlight metadata
attributes are far more numerous, and the list of attributes is open-ended
and specific to individual types of files. For example, while the file contain-
ing my book has an attribute specifying the page count, the file containing
one of my vacation photos has an attribute specifying the exposure time in
seconds. Each attribute makes sense for the corresponding file, but would
not make sense for the other one.

As you have seen, the metadata attributes that need indexing are specific
to individual types of files. Moreover, even common attributes may need to
be determined in different ways for different types of files. For example,
reading a PDF file to determine its number of pages is quite different from
reading a Microsoft Word file to determine its number of pages—the files are
stored in totally different formats. Therefore, when the indexing portion of
Spotlight receives notification from the file system indicating that a file has
changed, and hence should be indexed, it delegates the actual indexing work
to a specialist indexing program that depends on the type of file. When you
install a new application program on your system, the installation package
can include a matching indexing program. That way you will always be
able to search for files on your system using relevant attributes, but without
Apple having had to foresee all the different file types.

8.6.3 File Linking

Indexed attributes, such as page counts, are generally not unique. My sys-
tem may well have several five-page documents. By contrast, you have
already seen that each name within a directory names a single file. Just
because each pathname specifies a single file does not mean the converse is
true, however. In this subsection, I will explain two different ways in which
a file can be reachable through multiple names.

The most straightforward way in which multiple names can reach a single
file is if the directory entry for each of the names specifies the same file.
Figure 8.15 shows a directory with two names, both referring to the same
file. In interpreting this figure, you should understand that the box labeled
as the file does not denote just the data contained in the file, but also all
of the file’s metadata, such as its permissions. In the POSIX API, this
situation could have arisen in at least two different ways:

• The file was created with the name alpha, and then the procedure call
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Name File

alpha

beta
the file

Figure 8.15: A directory can contain two names for one file.

link("alpha", "beta") added the name beta.

• The file was created with the name beta, and then the procedure call
link("beta", "alpha") added the name alpha.

No matter which name is the original and which is added, the two play iden-
tical roles afterward, as shown in Figure 8.15. Neither can be distinguished
as the “real” name. Often people talk of the added name as a link to the
file. However, you need to understand that all file names are links to files.
There is nothing to distinguish one added with the link procedure.

POSIX allows a file to have names in multiple directories, so long as
all the directories are in the same file system. In the previous illustration
(Figure 8.15), alpha and beta in the current directory named one file. In-
stead, I could have had directory entries in multiple directories all pointing
at the same file. For example, in Figure 8.16, I show a situation where
/alpha/beta is a name for the same file as /gamma/delta.

To keep the directory structure from getting too tangled, POSIX sys-
tems ordinarily do not allow a directory to have more than one name. One
exception is that each directory contains two special entries: one called .

that is an extra link to that directory itself and one called .. that is an
extra link to its parent directory.

Just as link adds a name for a file, unlink removes a name. For example,
unlink("/alpha/beta") would eliminate one of the two routes to the file
in Figure 8.16 by removing the beta entry from the directory alpha. As
mentioned earlier, removing a name only implicitly has anything to do with
removing a file. The operating system removes the file when it no longer
has any names and is no longer in use by any process. (An open file can
continue to exist without any names, as you can demonstrate in Exploration
Project 8.10.)

POSIX also supports another alternative for how multiple names can
lead to one file. One name can refer to another name and thereby indi-
rectly refer to the same file as the second name. In this situation, the first
name is called a symbolic link. Figure 8.17 shows an example, where alpha
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Name File

delta the file

Name File Name File

alpha beta

gamma

Root:

Figure 8.16: A file can have two different names, each in its own directory.
In this example, the two pathnames /alpha/beta and /gamma/delta both
lead to the same file.

is specified as a symbolic link to beta, and thereby refers to whatever file
beta does. (Symbolic links are also sometimes called soft links. Ordinary
links are called hard links when it is important to emphasize the difference.)
In this figure, I show that a directory can map each name to one of two
options: either a pointer to a file (which could be represented as an inode
number) or another name. The code that looks up filenames, in proce-
dures such as open, treats these two options differently. When it looks up
alpha and finds beta, it recursively looks up beta, so as to find the actual
file. The symbolic link shown in Figure 8.17 could be created by executing
symlink("beta", "alpha").

Symbolic links are somewhat tricky, because they can form long chains,
dangling references, or loops. In the preceding example, you could form a
longer chain by adding gamma as a symbolic link to alpha, which is already
a symbolic link to beta. The code for looking up files needs to traverse such
chains to their end. However, there may not be a file at the end of the chain.
If you were to execute unlink("beta"), then you would have a dangling ref-
erence: gamma would still be a symbolic link to alpha, which would still be a

Name File

alpha

beta

beta
the file

Figure 8.17: A symbolic link allows a file name to refer to a file indirectly,
by way of another file name.
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symbolic link to beta, which wouldn’t exist any more. Worse, having deleted
beta, you could reuse that name as a symbolic link to alpha, creating a loop.
All POSIX procedures that look up files must return a special error code,
ELOOP, if they encounter such a situation. In addition to returning ELOOP

for true loops, these procedures are allowed to return the same error code
for any chain of symbolic links longer than some implementation-defined
maximum.

Symbolic links are more flexible than hard links. You can create a sym-
bolic link that refers to a directory. You can also create a symbolic link that
refers to a file stored in a separate file system. For example, you could have
a symbolic link in your main file system, stored on your local disk drive,
that refers to a file stored in an auxiliary file system on a network file server.
Neither of these options is possible with a hard link.

You can create either a symbolic link or an ordinary hard link from within
a shell by using the ln command. This command runs a program that will
invoke either the link procedure or the symlink procedure. You can explore
this command and the results it produces in Exploration Projects 8.9 and
8.11.

Some file systems outside the UNIX tradition store the metadata for a
file directly in that file’s directory entry, rather than in a separate structure
such as an inode. This tightly binds the name used to reach the file together
with the identity of the file itself. In effect, the name becomes an attribute
of the file, rather than just a means of accessing the file. In systems of this
kind, symbolic links can still be used, but there is no easy analog for hard
links. This leads to an interesting situation when one of these systems needs
to be retrofitted for POSIX compliance.

For example, Apple’s HFS Plus was developed before Mac OS became
based on UNIX, which happened in Mac OS X. The underlying design as-
sumes that each file has exactly one name and fuses together the directory
and metadata structures. Yet Mac OS X is a UNIX system and so needs to
support files with multiple names (created with link) or no names (if still
in use when unlinked). To accommodate this, Apple puts any file that is
in either of these situations into a special invisible directory with a random
number as its name. Any other names for the file are provided by a special
kind of symbolic link, which is made completely invisible to the POSIX API,
even to those procedures that normally inspect symbolic links rather than
simply following them to their targets.
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8.6.4 Directory and Index Data Structures

The simplest data structure for a directory or index is an unordered linear
list of key/value pairs. Whereas this is never used for a database index, it
is the most traditional approach for directories in UNIX-family file systems
and remains in use in many systems to this day. With this structure, the
only way to find a directory entry is through linear search. (For a database,
unordered linear search is available without any index at all by searching
the underlying rows of the database table.)

For small directories, a linear search can perform quite reasonably. There-
fore, system administrators often design directory trees so that each direc-
tory remains small. For example, my home directory is not /home/max, but
rather /home/m/a/max, where the m and a come from the first two letters of
my username. That way, the /home directory has only 26 entries, each of
which in turn has 26 entries, each of which has only one small fraction of the
thousands of users’ home directories. As you will see shortly, this kind of
directory tree is no longer necessary with a modern file system. On a mod-
ern system, my files could be in /home/max, and similarly for the thousands
of other users, without a major slowdown—unless, of course, someone listed
the contents of /home.

A second alternative structure is a hash table. A hash table is a numer-
ically indexed array of key/value pairs where software can directly access
entry number i without looking at the preceding entries. The trick is to
know (most of the time) which entry would contain a particular key; this
knowledge comes from using a hash function of the key as the entry number.
So long as no two keys collide and are assigned the same location, looking up
a particular entry (such as the one for max inside the /home directory) is a
constant-time operation, independent of the table size. All that is necessary
is to hash the key into a numerical hash code and use that code to directly
access the appropriate entry. If it contains the desired key (max), the lookup
is complete. If it contains no key at all, the lookup is also complete and can
report failure. If, due to a collision, the entry contains some other key than
the one being looked for, the system must start searching through alterna-
tive locations. That searching, however, can be kept very rare, by ensuring
that the table is never very full.

Hash tables are occasionally used for database indexes; in particular,
they are an option in PostgreSQL. However, as I mentioned in Section 8.5.1,
they have the disadvantage relative to B+-trees of not supporting order-
based accesses. For example, there is no way to use a hash table index to find
all rows in an accounting table for payments made within a particular range
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of dates. Hash indexes may also not perform as well as B+-tree indexes; the
PostgreSQL documentation cites this as a reason to discourage their use.

Hash tables are also occasionally used for indexing file system directories.
In particular, the FFS file system used in BSD versions of UNIX supports a
directory hashing extension. This feature builds a hash table in memory for
large directories at the time they are accessed. However, the on-disk data
structure remains an unsorted linear list.

B+-trees are the dominant structure for both database indexes and con-
temporary file systems’ directories. I already discussed the structure of
B+-trees in Section 8.5.1 and showed how they provide highly efficient ac-
cess. As examples, B+-trees are used for directories in Microsoft’s NTFS, in
SGI’s XFS, and (in a different form) in Apple’s HFS Plus.

In most systems, each index or directory is represented by its own B+-
tree. HFS Plus instead puts all the directories’ entries together in one big
B+-tree. The keys in this tree are formed by concatenating together the
identifying number of the parent directory with the name of the particular
child file (or subdirectory). Thus, all the entries within a single directory
appear consecutively within the tree.

8.7 Metadata Integrity

When a system crashes, any data held in the volatile main memory (RAM)
is lost. In particular, any data that the file system was intending to write to
persistent storage, but was temporarily buffering in RAM for performance
reasons, is lost. This has rather different implications depending on whether
the lost data is part of what a user was writing into a file or is part of the
file system’s metadata:

• Some user data is noncritical, or can be recognized by a human as
damaged and therefore restored from a backup source. Other user data
is critical and can be explicitly flushed out to persistent storage under
control of the application program. For example, when a relational
database system is committing a transaction and needs to ensure that
all the log entries are in persistent storage, it can use the POSIX API’s
fsync procedure to force the operating system to write the log file to
persistent storage.

• If the last few metadata operations before a crash are cleanly lost in
their entirety, this can often be tolerated. However, users cannot tol-
erate a situation where a crash in the middle of metadata updates
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results in damage to the integrity of the metadata structures them-
selves. Without those structures to organize the storage blocks into
meaningful files, the storage contents are just one big pile of bits.
There wouldn’t even be any individual files to check for damage.

Therefore, all file systems contain some mechanism to protect the integrity
of metadata structures in the face of sudden, unplanned shutdowns. (More
extreme hardware failures are another question. If your machine room burns
down, you better have an off-site backup.)

Metadata integrity is threatened whenever a single logical transformation
of the metadata from one state to another is implemented by writing several
individual blocks to persistent storage. For example, extending a file by one
data block may require two metadata blocks be written to storage: one
containing the inode (or indirect block) pointing at the new data block and
another containing the bitmap of free blocks, showing that the allocated
block is no longer free. If the system crashes when only one of these two
updates has happened, the metadata will be inconsistent. Depending on
which update was written to persistent storage, you will either have a lost
block (no longer free, but not part of the file either) or, more dangerously,
a block that is in use, but also still “free” for another file to claim.

Although having a block “free” while also in use is dangerous, it is not
irreparable. If a file system somehow got into this state, a consistency repair
program could fix the free block bitmap by marking the block as not free.
By contrast, if the situation were to progress further, to the point of the
“free” block being allocated to a second file, there would be no clean repair.
Both files would appear to have equal rights to the block.

Based on the preceding example, I can distinguish three kinds of meta-
data integrity violation: irreparable corruption, noncritical reparable cor-
ruption, and critical reparable corruption. Irreparable corruption, such as
two files using the same block, must be avoided at all costs. Noncritical
reparable corruption, such as a lost block, can be repaired whenever conve-
nient. Critical reparable corruption, such as a block that is both in use and
“free,” must be repaired before the system returns to normal operation.

Each file system designer chooses a strategy for maintaining metadata
integrity. There are two basic strategies in use, each with two main variants:

• Each logical change to the metadata state can be accomplished by
writing a single block to persistent storage.

– The single block can be the commit record in a write-ahead log, as
I discussed in Section 5.4. Other metadata blocks may be written
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as well, but they will be rolled back upon reboot if the commit
record is not written. Thus, only the writing of the commit block
creates a real state change. This approach is known as journaling.

– Alternatively, if the system always creates new metadata struc-
tures rather than modifying existing ones, the single block to
write for a state change is the one pointing to the current meta-
data structure. This approach is known as shadow paging.

• Each logical change to the metadata state can be accomplished by
writing multiple blocks to persistent storage. However, the order of
the updates is carefully controlled so that after a crash, any incon-
sistencies in the metadata will always be of the reparable kind. A
consistency repair program is run after each crash to restore the meta-
data’s integrity by detecting and correcting violations of the metadata
structures’ invariant properties.

– The update order can be controlled by performing each metadata
update as a synchronous write. That is, the file system actually
writes the updated metadata block to persistent storage immedi-
ately, rather than buffering the write in RAM for later.

– The update order can be controlled by buffering the updated
metadata blocks in RAM for later writing, but with specific an-
notations regarding the dependencies among them. Before writ-
ing a block to persistent storage, the system must write the other
blocks upon which it depends. If the same blocks are updated
repeatedly before they are written to storage, cyclic dependen-
cies may develop, necessitating additional complications in the
mechanism. This approach is known as using soft updates.

The strategy of update ordering through synchronous writes was once
quite popular. Linux’s ext2fs uses this approach, for example. However,
performance considerations have removed this approach from favor, and it
is unlikely ever to return. The problem is not only that synchronous writes
slow normal operation. Far more fatally, as typical file systems’ sizes have
grown, the consistency repair process necessary after each crash has come
to take unacceptably long. Because synchronous writes are expensive, even
systems of this kind use them as sparingly as possible. The result is that
while all inconsistencies after a crash will be reparable, some may be of
the critical kind that need immediate repair. Thus, the time-consuming
consistency repair process must be completed before returning the crashed
system to service.
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Contemporary file systems have almost all switched to the journaling
strategy; examples include Linux’s ext3fs, Microsoft Windows’s NTFS, and
Mac OS X’s HFS Plus. After rebooting from a crash, the system must still do
a little work to undo and redo storage-block updates in accordance with the
write-ahead log. However, this is much faster, as it takes time proportional
to the amount of activity logged since the last checkpoint, rather than time
proportional to the file system size.

Shadow paging has been less widely adopted than journaling. Three
examples are the WAFL file system used in Network Appliance’s storage
servers, the ZFS file system developed by Sun Microsystems, and the btrfs
file system for Linux. Network Appliance’s choice of this design was mo-
tivated primarily by the additional functionality shadow paging provides.
Because storage blocks are not overwritten, but rather superseded by new
versions elsewhere, WAFL naturally supports snapshots, which keep track
of prior versions of the file system’s contents. Although shadow paging has
not become as widespread as journaling, there is more hope for shadow pag-
ing than for either form of ordered updates (synchronous writes and soft
updates). Increases in the demand for snapshots, the capacity of storage
devices, and the utilization of solid-state storage are causing shadow paging
to increasingly challenge journaling for dominance.

The soft updates strategy is generally confined to the BSD versions of
UNIX. Its main selling point is that it provides a painless upgrade path
from old-fashioned synchronous writes. (The in-storage structure of the file
system can remain identical.) However, it shares the biggest problem of
the synchronous write strategy, namely, the need for post-crash consistency
repair that takes time proportional to the file system size.

Admittedly, soft updates somewhat ameliorate the problem of consis-
tency repair. Because soft updates can enforce update ordering restrictions
more cheaply than synchronous writes can, file systems using soft updates
can afford to more tightly control the inconsistencies possible after a crash.
Whereas synchronous write systems ensure only that the inconsistencies are
reparable, soft update systems ensure that the inconsistencies are of the
noncritical variety, safely reparable with the system up and running. Thus,
time-consuming consistency repair need not completely hold up system op-
eration. Even still, soft updates are only a valiant attempt to make the best
of an intrinsically flawed strategy.

Because the only strategy of widespread use in contemporary designs is
journaling, which I discussed in Section 5.4, I will not go into further detail
here. However, it is important that you have a high-level understanding
of the different strategies and how they compare. If you were to go further
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and study the other strategies, you would undoubtedly be a better-educated
computer scientist. The notes section at the end of this chapter suggests
further reading on shadow paging and soft updates, as well as on a hybrid of
shadow paging and journaling that is known as a log-structured file system.

8.8 Polymorphism in File System Implementations

If you have studied modern programming languages, especially object-oriented
ones, you should have encountered the concept of polymorphism, that is, the
ability of multiple forms of objects to be treated in a uniform manner. A
typical example of polymorphism is found in graphical user interfaces where
each object displayed on the screen supports such operations as “draw your-
self” and “respond to the mouse being clicked on you,” but different kinds
of objects may have different methods for responding to these common op-
erations. A program can iterate down a list of graphical objects, uniformly
invoking the draw-yourself operation on each, without knowing what kind
each is or how it will respond.

In contemporary operating systems, the kernel’s interface to file sys-
tems is also polymorphic, that is, a common, uniformly invokable interface
of operations that can hide a diversity of concrete implementations. This
polymorphic interface is often called a virtual file system (VFS ). The VFS
defines a collection of abstract datatypes to represent such concepts as direc-
tory entry, file metadata, or open file. Each datatype supports a collection of
operations. For example, from a directory entry, one can find the associated
file metadata object. Using that object, one can access or modify attributes,
such as ownership or protection. One can also use the file metadata object
to obtain an open file object, which one can then use to perform read or
write operations. All of these interface operations work seamlessly across
different concrete file systems. If a file object happens to belong to a file on
an ext3fs file system, then the write operation will write data in the ext3fs
way; if the file is on an NTFS file system, then the writing will happen the
NTFS way.

Operating systems are typically written in the C programming language,
which does not provide built-in support for object-oriented programming.
Therefore, the VFS’s polymorphism needs to be programmed more explic-
itly. For example, in Linux’s VFS, each open file is represented as a pointer
to a structure (containing data about the file) that in turn contains a pointer
to a structure of file operations. This latter structure contains a pointer to
the procedure for each operation: one for how to read, one for how to write,
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and so forth. As Figure 8.18 shows, invoking the polymorphic vfs_write

operation on a file involves retrieving that file’s particular collection of file
operations (called f_op), retrieving the pointer to the particular write op-
eration contained in that collection, and invoking it. This is actually quite
similar to how object-oriented programming languages work under the hood;
in C, the mechanism is made visible. (The vfs_write procedure writes a
given count of bytes from a buffer into a particular position in the file. This
underlies the POSIX pwrite and write procedures I described earlier.)

8.9 Security and Persistent Storage

When considering the security of a persistent storage system, it is critical
to have a clear model of the threats you want to defend against. Are you
concerned about attackers who will have access to the physical disk drive,
or those who can be kept on the other side of a locked door, at least until
the drive is taken out of service? Will your adversaries have sufficient moti-
vation and resources to use expensive equipment? Are you concerned about
authorized users misusing their authorization, or are you concerned only
about outsiders? Are you concerned about attackers who have motivations
to modify or delete data, or only those whose motivation would be to breach
confidentiality?

As I explained in Section 7.6, if unencrypted data is written to a disk
drive and an attacker has physical access to the drive, then software-based
protection will do no good. This leads to two options for the security con-
scious:

• Write only encrypted data to the disk drive, and keep the key else-

ssize_t vfs_write(struct file *file, const char *buf,

size_t count, loff_t *pos){

ssize_t ret;

ret = file->f_op->write(file, buf, count, pos);

return ret;

}

Figure 8.18: Linux’s vfs write procedure, shown here stripped of many
details, uses pointers to look up and invoke specific code for handling the
write request.
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where. This leads to the design of cryptographic file systems, which
automatically encrypt and decrypt all data.

• Keep the attacker from getting at the drive. Use physical security
such as locked doors, alarm systems, and guards to keep attackers
away. This needs to be coupled with careful screening of all personnel
authorized to have physical access, especially those involved in systems
maintenance.

Keeping security intact after the disk is removed from service raises
further issues. Selling used disks can be a very risky proposition, even if the
files on them have been deleted or overwritten.

File systems generally delete a file by merely updating the directory
entry and metadata to make the disk blocks that previously constituted
the file be free for other use. The data remains in the disk blocks until
the blocks are reused. Thus, deletion provides very little security against a
knowledgeable adversary. Even if no trace remains of the previous directory
entry or metadata, the adversary can simply search through all the disk
blocks in numerical order, looking for interesting data.

Even overwriting the data is far from a sure thing. Depending on how
the overwriting is done, the newly written data may wind up elsewhere on
disk than the original, and hence not really obscure it. Even low-level soft-
ware may be unable to completely control this effect, because disk drives
may transparently substitute one block for another. However, carefully re-
peated overwriting by low-level software that enlists the cooperation of the
disk drive controller can be effective against adversaries who do not possess
sophisticated technical resources or the motivation to acquire and use them.

For a sophisticated adversary who is able to use magnetic force scanning
tunneling microscopy, even repeatedly overwritten data may be recoverable.
Therefore, the best option for discarding a drive containing sensitive data
is also the most straightforward: physical destruction. A disk shredder in
operation is an awesome sight to behold. If you’ve never seen one, you owe
it to yourself to watch one of the videos available on the web.

Having talked about how hard it is to remove all remnants of data from
a drive, I now need to switch gears and talk about the reverse problem:
data that is too easily altered or erased. Although magnetic storage is hard
to get squeaky clean, if you compare it with traditional paper records, you
find that authorized users can make alterations that are not detectable by
ordinary means. If a company alters its accounting books after the fact, and
those books are real books on paper, there will be visible traces. On the
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other hand, if an authorized person within the company alters computerized
records, who is to know?

The specter of authorized users tampering with records opens up the
whole area of auditability and internal controls, which is addressed exten-
sively in the accounting literature. Recent corporate scandals have focused
considerable attention on this area, including the passage in the United
States of the Sarbanes-Oxley Act, which mandates tighter controls. As a
result of implementing these new requirements, many companies are now
demanding file systems that record an entire version history of each file,
rather than only the latest version. This leads to some interesting techni-
cal considerations; the end-of-chapter notes provide some references on this
topic. Among other possibilities, this legal change may cause file system
designers to reconsider the relative merits of shadow paging and journaling.

Authorized users cooking the books are not the only adversaries who may
wish to alter or delete data. One of the most visible forms of attack by out-
siders is vandalism, in which files may be deleted wholesale or defaced with
new messages (that might appear, for example, on a public website). Van-
dalism raises an important general point about security: security consists
not only in reducing the risk of a successful attack, but also in mitigating
the damage that a successful attack would do. Any organization with a sig-
nificant dependence on computing should have a contingency plan for how
to clean up from an attack by vandals.

Luckily, contingency planning can be among the most cost-effective forms
of security measures, because there can be considerable sharing of resources
with planning for other contingencies. For example, a backup copy of data,
kept physically protected from writing, can serve to expedite recovery not
only from vandalism and other security breaches, but also from operational
and programming errors and even from natural disasters, if the backup is
kept at a separate location.

Exercises

8.1 In the introduction to this chapter, I gave an example of a database
table, including what the columns would be and what a typical row
might contain. Give a corresponding description for another example
table of your own choosing.

8.2 Suppose the POSIX API didn’t use integer file descriptors, but rather
required that the character-string file name be passed to each proce-
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dure, such as mmap, read, or write. Discuss advantages and disadvan-
tages of this change.

8.3 Given that the POSIX API uses integer file descriptors, it clearly needs
the open procedure. But what about close? Discuss advantages and
disadvantages for eliminating close from the API.

8.4 I mentioned that a defragmentation program rearranges files so that
the free space on the disk is contiguous. Consider my parallel-parking
analogy for external fragmentation, where as a result of smaller cars
taking spots opened up by larger ones, there may be enough total free
space along a block for another car, but no place that will accommo-
date the car. What would be the physical analog of the defragmenta-
tion program’s action?

8.5 Defragmenting parking, as in Exercise 8.4, would make it harder for
people to find their cars. The same problem arises for files on disk, but
computer programs are not as flexible as people are. After defragment-
ing a disk, the file system must still be able to unambiguously locate
each file. How can a defragmentation program arrange for that?

8.6 Describe in your own words the difference between a directory and an
index.

8.7 The Spotlight search feature of Mac OS X can find files rapidly by
using indexes. However, this feature may have other undesirable con-
sequences for system performance. Based on the description in this
chapter, what would you expect the performance problem to be?

8.8 Show that if a file system uses 4-KiB disk blocks and 128-MiB block
groups, the bitmap for a block group fits within a single block.

8.9 Best-fit allocation sounds superior to first-fit, but in actuality, either
may work better. By placing a new allocation into the smallest work-
able space, best-fit leaves the larger spaces for later. However, if the
best fit is not an exact fit, but only an extremely close one, the leftover
space may be too small to be useful. Demonstrate these phenomena by
creating two example sequences of extent allocations and deallocations
(using an unrealistically small disk), one in which best-fit succeeds but
first-fit at some point gets stuck, and the other in which first-fit suc-
ceeds but best-fit gets stuck.
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8.10 Assume an inode contains 12 direct block numbers, as well as single,
double, and triple indirect block numbers. Further, assume that each
block is 4 KiB, and that each block number is 4 bytes. What is the
largest a file can be without needing to use the triple indirect block?

8.11 Draw two alternative “after” pictures for Figure 8.12 on page 368, one
showing what would happen if 7 were inserted instead of 16, and the
other showing what would happen if 10 were inserted instead of 16.

8.12 Using Figure 8.13 on page 369, translate the following file block num-
bers into disk block numbers: 3, 9, 76, 251.

8.13 Insertion into a B-tree node that is full to its capacity of N always
behaves the same way, whether the node is a leaf or not. The node is
split, withN/2 keys in each new node, and the median key inserted into
the parent node. The situation with B+-trees is somewhat different.
Insertions into leaf nodes use a variant rule. You can work an example
starting from Figure 8.13 on page 369. Assume that the leaf nodes
have room for up to four records of information, each describing one
extent, and that the nonleaf nodes have room for four keys and the
associated pointers to subtrees.

(a) Initially insert information about two 100-block extents, starting
at file blocks 300 and 400, with respective starting disk blocks
3000 and 4000. These insertions should make one of the leaf
nodes full, but not yet require any splitting.

(b) Now insert another 100-block extent, with starting file block 500
and starting disk block 5000. This should require splitting a leaf
node. Because all records of information about the extents need
to remaining in leaf nodes, you should put two records in the first
node resulting from the split, and three in the second. Unlike with
a pure B-tree, no information is removed from the leaf level and
relocated to the parent. However, you do insert into the parent
a copy of one of the keys (that is, one of the starting file block
numbers). Which one?

8.14 I explained two different ways that Figure 8.15 on page 375 could arise:
starting with alpha or starting with beta. What would a third option
be?

8.15 While I was co-authoring a previous book, a system administrator
accidentally deleted all our files and then admitted not having made
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backups for months. (This system administrator no longer works for
the college.) He immediately took the drive out of service. Why was
this a smart thing to do? What do you think we then did to recover
the files containing the book?

Programming Projects

8.1 Modify the file-processes.cpp program from Figure 8.2 on page 342
to simulate this shell command:

tr a-z A-Z </etc/passwd

8.2 Read the documentation for the fstat procedure and modify the
fstater.cpp program of Figure 8.3 on page 344 to print out more
comprehensive information. You may want to incorporate some of the
code from the stater.cpp program of Figure 8.14 on page 370.

8.3 Write a program that opens a file in read-only mode and maps the
entire file into the virtual-memory address space using mmap. The
program should search through the bytes in the mapped region, testing
whether any of them is equal to the character X. As soon as an X is
found, the program should print a success message and exit. If the
entire file is searched without finding an X, the program should report
failure. Time your program on files of varying size, some of which have
an X at the beginning, while others have an X only at the end or not
at all.

8.4 You have seen that

(ls; ps) >information

puts both a listing of files and a listing of processes into information.
Suppose you have an executable program, ./mystery, such that

(ls; ./mystery; ps) >information

results in only the process listing being in information, without any
list of files. How might the program accomplish this? Write such a
program.

8.5 Write a program in C or C++ that can be used to rename a file. However,
rather than using the rename procedure, your program should use the
link and unlink procedures.
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Exploration Projects

8.1 Section 8.2 makes at least eight quantitative claims about typical con-
temporary disk drives. Use current literature to verify or update my
values for each of the quantities in the following list. Cite the sources
you use. In general, the answers need only be order of magnitude
approximations.

(a) sector size

(b) sustained transfer rate with optimal access pattern

(c) sustained transfer rate with random accesses

(d) rotational speed

(e) proportion between head switch and single-track seek times

(f) proportion between seek times for large and small seeks

(g) data transferable in time needed for a single-track seek

(h) proportion between rotation time and seek time for a large seek

8.2 Research and write a short paper on persistent storage technologies
that were used before moving-head magnetic disks. When and why
did they fall out of use?

8.3 Find historical examples of persistent storage technologies that were
originally expected to displace magnetic disks, but then failed to do
so. Summarize what happened in each case.

8.4 Find examples of persistent storage technologies other than magnetic
disks that are currently in use in specific niches. What makes them
particularly suited to those niches, but not to the broader applica-
tion areas where magnetic disks are used? Do they have performance
characteristics sufficiently different from disks to invalidate any of the
design decisions presented in this chapter?

8.5 Find examples of experimental or proposed storage technologies that
have been suggested as possible future replacements for magnetic disks.
Do they have performance characteristics sufficiently different from
disks to invalidate any of the design decisions presented in this chapter?

8.6 UNIX and Linux file systems generally place ordinary files near their
parent directory, and with the introduction of the new Orlov allocator,
even often place subdirectories near the parent directory. You can find
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out how important these forms of locality are by modifying Linux’s
ext2fs or ext3fs file system to scatter the files and directories across
the disk and then measuring how much worse the performance gets.
(Ext3fs is used more today, but ext2fs might provide results that are
simpler to understand because there would be no journaling activity
to factor in.)

The Linux source file fs/ext2/ialloc.c (or fs/ext3/ialloc.c) con-
tains a procedure ext2_new_inode (or ext3_new_inode). Near the
top of this procedure, you will find code that calls one of find_group_dir,
find_group_orlov, or find_group_other in order to select a block
group for the new inode. Normal files always use find_group_other,
which tries to place the file in the same block group as its parent direc-
tory. Depending on an option selection, directories either use the new
Orlov allocator or the old find_group_dir, which tended to spread
directories more widely. (This difference is discussed in Section 8.4.3.)

Change the code to always use find_group_dir, whether the inode
is for a subdirectory or not, and irrespective of option settings. Build
a kernel with this modified code. You should set your system up so
that you can boot either the normal kernel or the modified one. (Make
sure that there is no other difference between your two kernels. This
implies you should have built the normal kernel yourself as well.)

Repeatedly reboot the system with one kernel or the other, and each
time do a timing test such as unpacking a software distribution and
then removing it. Each time you conduct your timing test, you should
record the elapsed time and the user and system CPU times.

Write a report in which you explain what you did, and the hardware
and software system context in which you did it, carefully enough that
someone could replicate your results. How large a performance differ-
ence do you find between the two kernels? Is the difference consistent
enough, across enough trials, to not to be explainable as chance? As-
suming that there is a significant difference, to what extent is the
slower version spending longer using the CPU versus waiting for the
disk? Can you reach any conclusion as to whether the extra time is
likely to come from the find_group_X procedure itself taking longer
to execute or from reduced locality of the disk accesses?

8.7 Find, or generate yourself, some data showing the performance impact
of Mac OS X’s hot file clustering feature. Report these results and
summarize how hot file clustering works. (Be sure not to plagiarize:
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cite your sources, and don’t follow them too closely.)

8.8 If you have a Linux or Mac OS X system, read the documentation for
debugfs or hfsdebug, respectively, and use that tool to examine the
structure of a file system. (Linux systems generally include debugfs,
whereas for Mac OS X, you will need to download the third-party
hfsdebug from the web.) At a minimum, report for each of several files
how many disk blocks are used to store the file, how many extents those
disk blocks constitute, and how densely packed together the extents
are on disk. As a measure of density, you can divide the number of
disk blocks by one more than the difference between the highest and
lowest block numbers.

8.9 On a POSIX system (such as Linux or Mac OS X), read the docu-
mentation for ln and then show how by using it you can create the
situation of Figure 8.15 on page 375 using shell commands, without
needing to write a custom program. What does the output from ls -l

show after you have done this? Next, use rm to remove beta, and then
re-create it with different content. What does ls -l show afterward?
Does alpha have the old or new content?

8.10 On a POSIX system (such as Linux or Mac OS X), demonstrate a
program continuing to make use of an open file after all names for that
file have been removed. You can remove the names using rm in a shell,
rather than needing to write a program that uses unlink. Similarly,
the program using the file can be an existing program such as cat

or tail—no programming is needed. Make sure, however, that the
program actually reads or writes the file after the names are removed,
rather than just continuing to use data it has in memory that it read
from the file previously. You may find this easiest if you have not one
but two programs concurrently making use of the file: one writing to
it and the other reading from it.

8.11 On a POSIX system (such as Linux or Mac OS X), read the docu-
mentation for ln and then show how by using it you can create the
situation of Figure 8.17 on page 376 using shell commands, without
needing to write a custom program. What does the output from ls -l

show after you have done this? Next, use rm to remove beta, and then
re-create it with different content. What does ls -l show afterward?
Does alpha have the old or new content?
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8.12 You have seen two forms of links: symbolic links and hard links. UNIX
originally had only one of these; the other was added later. Research
the history of UNIX to find out which kind was the original. Moreover,
UNIX was based on the earlier Multics system, which only offered one
kind of link. Research Multics to find out which kind it offered. Was
it the same as UNIX’s original kind?

8.13 Even though journaling file systems do not need to run a consistency
repair program after each crash, they normally have a consistency
repair program available anyway. Speculate on why this might be
useful, then see if your explanation matches the one in the article
about XFS cited in the end-of-chapter notes.

Notes

In this chapter, I have assumed the use of a single disk; disk arrays and
volume managers introduce another layer of interesting questions. The most
popular form of disk array is a RAID; see the survey by Chen et al. [31].
For an interesting example of using an adaptive policy to manage RAIDs,
see the paper by Wilkes et al. on HP’s AutoRAID [156].

Two accessible tutorials on disk technology and performance are those
by Anderson [4] and by Anderson, Dykes, and Riedel [5]. These articles also
quantify the performance benefits that can be gained by queuing multiple
requests with a disk controller and allowing its internal scheduler to process
the requests in an appropriate order.

For more information on the POSIX API, see http:// opengroup.org/
unix . For the original UNIX API from which POSIX evolved (as did later
UNIX versions, for that matter), see the 1974 article by Ritchie and Thomp-
son [119]. That paper also sketches the internal structure of the initial UNIX
file system. Other specific file systems I mentioned include NTFS [126], HFS
Plus [8], XFS [143], and WAFL [77].

Internal and external fragmentation were distinguished in a 1969 article
by Randell [117]. The conclusions reached in that paper were quickly called
into question, but the vocabulary it introduced has become standard.

Orlov’s heuristic for where to allocate directories has been mostly doc-
umented in source code, posts to email lists, and so forth. Moreover, there
have been multiple variants; the so-called “Orlov allocator” included in
Linux’s ext3fs is not quite what Orlov proposed. The closest to a published
version of Orlov’s work are the notes he posted on his website, which was
http:// www.ptci.ru/ gluk/ dirpref/ old/ dirpref.html ; In the meantime, that

http://opengroup.org/unix
http://opengroup.org/unix
http://web.archive.org/web/20080131082712/http://www.ptci.ru/gluk/dirpref/old/dirpref.html
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site has gone offline, but the contents are still available through the Internet
Archive’s “Wayback Machine.” Many other allocation ideas go back much
further; the classic work, which includes a comparison of best-fit and first-fit
allocation, is by Knuth [90].

I mentioned that the analogs of inodes in Microsoft’s NTFS are large
enough to contain the entire extent maps for most files. In the rare case
that the extent map does not fit in a single 1-KiB record, NTFS expands
the metadata into multiple 1-KiB records, but unlike other file systems, it
continues to use a linear extent map rather than a B+-tree.

B-trees were introduced by Bayer and McCreight [11]. A later survey by
Comer [37] explained the B+-tree variant.

Two historical file systems well worth studying are those from Mul-
tics [41] and TENEX [23]. The Multics system originated hierarchical direc-
tories. One of TENEX’s important innovations was automatic versioning of
files. Versioning was incorporated into several other systems, but because
neither UNIX nor NTFS included it, this feature faded from prominence.
A recent upsurge in concern for auditability has helped bring versioning
back to the fore. Some interesting related papers include those by Santry et
al. [129], by Quinlan and Dorward [116], and by Soules et al. [137].

Regarding alternatives to journaling, the WAFL paper cited previously
provides a good example of shadow paging. Rodeh [121] has addressed
the more interesting situation that arises when shadow paging is combined
with another important design ingredient of modern file systems, B+-trees;
the btrfs Linux file system exemplifies this combination. Soft updates are
presented by Ganger et al. [60]. Rosenblum and Ousterhout’s design for
a log-structured file system (LFS) [122] essentially amounts to a shadow-
paging scheme, because new versions of data and metadata blocks occupy
previously free locations on disk, rather than overwriting the prior versions.
However, LFS also has some commonality with journaling file systems, in
that the written blocks constitute a log.

Gutmann [67] provides information on how hard it is to truly delete data
from a disk.



Chapter 9

Networking

9.1 Introduction

The overarching theme of this book is how computations interact with one
another with support from operating systems and middleware. In Chapter 8
you saw that computations running at different times can interact by using
persistent storage. In this chapter, you will see that computations can be
distributed in space as well as time by sending messages across networks.

Networking is a topic that merits its own courses and textbooks. My
goal here is to give an overview or review, depending on whether you have
studied the topic before. I particularly highlight the ways in which network-
ing ties in with the division of responsibilities between operating systems,
middleware, and application software. Chapter 10 goes into more depth on
the middleware commonly used to support distributed applications.

Because black boxes are inimical to education, I provide more detail
about networking than is absolutely necessary for the development of dis-
tributed systems. However, my objective is not to make you a network
engineer, capable of monitoring congestion and configuring routers, or even
to give you a start towards that goal. (Though if you do pursue that goal,
my overview of networking should not hurt you.) Instead, I am trying to ex-
plain the foundations that underlie distributed systems. In this chapter, not
only do I spend a lot of time on the foundations, but also some time on such
higher-level structures as the web and distributed file systems. Chapter 10
moves completely away from networking per se and into the middleware
most commonly used to build distributed systems.

395
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9.1.1 Networks and Internets

Before going any further, I should be clear about the meaning of three
closely related terms: “a network,” “an internet,” and “the Internet.” I will
start by describing what networks and internets have in common and then
describe the essential difference. Once you understand the general concept
of an internet, I will be able to define the Internet as one specific internet.

A network is a collection of links and switches; so is an internet. Links
are communication channels, such as wires, optical fibers, or radio channels.
Switches are devices that connect links together and forward data between
them. Some switches are known by more specific names; for example, those
that connect radio links to wired links are known as access points, and those
that connect the constituent networks of an internet are known as routers,
as I will discuss subsequently.

Both networks and internets have computers interfaced to some of the
links, as shown in Figure 9.1, with each interface identified by an address.
Any interfaced computer can transmit data tagged with a destination ad-
dress, and under normal circumstances the data will make its way through
the appropriate links and switches so as to arrive at the specified destina-
tion. (As a simplification, I will ignore multicast, in which a single message
can be delivered to more than one destination interface.) A chunk of data
tagged with an address is informally called a packet ; later I will introduce
a variety of more specific terms (datagram, segment, and frame), each of
which is synonymous with packet but implies a particular context.

For a single network, as opposed to an internet, the preceding descrip-
tion is essentially the entire story. Data injected into the network is tagged
only with the destination address, not with any information about the route
leading to that address. Even the word “address” may be misleading; ad-
dresses on a network do not convey any information about physical location.
If you move a computer to somewhere else on the same network, it will still
have the same address.

Thus, a packet of data with a network address is not like an envelope
addressed to “800 W. College Ave., St. Peter, MN 56082, USA,” but rather
like one addressed to “Max Hailperin.” The network needs to figure out
where I am, as well as what path through the links and switches leads to
that location. As such, the switches need to take considerable responsibility.

In part, switches within networks shoulder their responsibility for deliv-
ering data by keeping track of each interface’s last known location. In part,
the switches take the simpler approach of forwarding data every which way,
so that it is sure to run into the destination interface somewhere. (However,
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SwitchLink

Legend:

Computer

Address 1 Address 2

Figure 9.1: This network (or internet) contains four links, two switches, and
two interfaced computers. Two alternative paths connect the two computers.
As described in the text, more information would be needed to determine
whether this is a picture of a single network or an interconnected group of
networks, that is, an internet.

the forwarding must not be so comprehensive as to cause data to flow in cy-
cles.) Neither approach scales well. As such, networks are normally confined
to a limited number of interfaces, such as one workgroup within a company.
When the network’s scale is small geographically as well as in number of
interfaces, it is called a local area network (LAN ). Conversely, a wide area
network (WAN ) ties together interfaces that are far apart, though they are
generally still few in number, perhaps even just two.

Multiple networks can be linked together into an internet by using
routers, which are switches that connect to more than one network, as shown
in Figure 9.2. In order to distinguish internets from networks, I still need to
explain why linking networks together doesn’t just result in a single larger
network.

The distinguishing feature of an internet is that the destination addresses
for the data it conveys are two-part internet addresses, identifying both the
destination network and the specific computer interface on that network.
Returning to my real-world analogy, a packet of data with an internet ad-
dress is like an envelope addressed to “Max Hailperin, Gustavus Adolphus
College.” There are people all over the world (analogous to routers) who
could figure out how to forward the envelope to Gustavus Adolphus College.
Once the envelope was on my college campus, people (analogous to switches
within my local network) could forward the envelope to me.

Internets work similarly. Each router figures out what the next router
should be in order to reach the destination network, independent of the
specific computer on that network. The data is forwarded from each router
to the next using the ordinary mechanisms of each constituent network, and
likewise is forwarded from the last router to the destination computer using
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Network 1 Network 2 Network 3

SwitchLink

Legend:

Router Network

Figure 9.2: This internet was formed by connecting three networks. Each
connection between networks is provided by a router, which is a switch
interfaced to links belonging to two or more networks.

the destination network’s mechanisms.
The two-part structure of internet addresses comes with a cost; when a

computer is moved from one network to another, it must be assigned a new
internet address. However, in return for this cost, an internet can scale to
a much larger size than an individual network. In particular, one internet
now connects such a large fraction of the world’s computers that it is simply
known as “the Internet.”

9.1.2 Protocol Layers

Network communication is governed by sets of rules, known as protocols,
which specify the legal actions for each partner in the dialog at each step
along the way. For example, web browsers communicate with web servers
using HTTP (Hypertext Transfer Protocol), which specifies the messages
the browser and server can legally send at each step. In Section 9.2.1, I
will show what those messages actually look like. For now, however, I will
paraphrase the messages in plain English in order to illustrate the notion of
a protocol.

When a web browser asks a web server to download a particular web
page only if it has changed since the version the browser has cached, the
server may legitimately respond in several different ways, including:

• “It changed; here is the new version.”
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• “No change, so I won’t bother sending the page.”

• “I have no clue what page you are talking about.”

However, the web server is not allowed to give any of those responses until
the question is asked, and it is also not allowed to give other responses that
might be legal in other circumstances, such as “I created that new page
per your upload.” Not surprisingly, HTTP also forbids the web server from
responding with something like “mailbox full” that would be appropriate in
a different protocol, the one used to deliver email.

When humans converse, they talk not only about the subject of the con-
versation (“We could sure use some rain.”) but also about the conversation
itself (“I didn’t catch that, could you say it again?”). Similarly, computers
use not only application protocols, like the ones for downloading web pages
and sending email messages, but also transport protocols, which control such
matters as retransmitting any portions of the message that get lost.

An application protocol can be viewed as layered on top of a transport
protocol, because the designers of the application protocol take for granted
the services provided by the transport protocol. With the most common
transport protocol, TCP (Transmission Control Protocol), the application
protocol designers assume the transport protocol will take care of reliably
sending a stream of bytes and having them arrive in order, without dupli-
cation or loss. All that need concern the application protocol designer is
what the bytes should be to encode the various messages and responses.
Meanwhile, the transport protocol designer doesn’t worry about what bytes
need streaming from one computer to another, just about the mechanisms
for packaging chunks of bytes with sequence numbers, retransmitting lost
chunks, and assembling the chunks together at the receiving end based on
their sequence numbers. Thus, the layering of the two protocols results in
a separation of concerns; each protocol can be designed without concern for
the details of the other.

The transport layer is also responsible for allowing each pair of computers
to engage in more than one conversation, a feature known as multiplexing.
For example, a web browser on my desktop computer can be requesting
web pages from the college’s main server at the same time as my email
program is delivering outgoing email to that same server. Each transport-
layer connection is identified not only by the internet addresses of the two
computers, but also by a port number on each end, which identifies a specific
communication endpoint. My web browser connects to one port number on
the server while my email program connects to another. The transport-layer
software on the receiving computer delivers the data for each port number
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to the appropriate application-layer software, that is, it demultiplexes the
arriving data.

The transport protocol can in turn be simplified by assuming that it has
a network protocol under it, which makes its best effort to deliver a chunk of
data to an internet address. The transport protocol may use this service for
sending fresh chunks of application data, handed to it from the application
layer, or for sending retransmissions. It may also use it for its own internal
purposes, such as sending acknowledgments indicating what data has been
received versus what needs retransmission. Regardless, from the perspective
of the network protocol, these are all just packets to deliver. Meanwhile,
from the perspective of the transport layer, delivery just happens; details
like routing need not concern it.

The network layer is actually something of a misnomer, in that it is re-
sponsible for routing data through an internet. In fact, the most common
network protocol is called the Internet Protocol (IP). This protocol is used
to attempt to deliver data to any internet address, possibly by way of in-
termediate routers. Underneath it are two more layers, which are genuinely
concerned with individual networks: the link and physical layers. I’ll say
more about these layers in Section 9.5. For now, it suffices to say that these
are the layers implemented by networking hardware, such as Ethernet or
Wi-Fi network cards, for wired or wireless LANs, respectively.

Counting up from the bottom of the stack, the physical, link, network,
and transport layers are frequently referred to as layers 1, 2, 3, and 4. You
might think that the application layer is 5, but in fact there are two layers
I omitted, the session and presentation layers, which are layers 5 and 6.
Therefore, the application layer is layer 7. The only reason you need to
know these numbers is because they frequently show up in discussions of
networking devices such as firewalls. For example, someone may tell you
that their firewall does “filtering based on level 7 content.” What this says
is that the firewall looks at the specific contents of web page requests or
email transmissions.

The listing of seven layers, illustrated in Figure 9.3, is known as the OSI
(Open Systems Interconnection) reference model. I omit layers 5 and 6 from
my subsequent discussions because they are not part of the architecture of
the Internet, which was developed prior to the OSI reference model. In the
Internet architecture, the application layer takes on the additional respon-
sibilities, such as character set encoding and the establishment of network
connections, that are assigned to the presentation and session layers in the
OSI reference model. I will also largely fold together layers 1 and 2, because
the difference doesn’t matter unless you are engineering network hardware.
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Figure 9.3: This diagram of the seven protocol layers in the OSI reference
model provides examples for the layers I discuss.

As such, the bulk of this chapter is divided into four sections, one each for
the application layer (9.2), the transport layer (9.3), the network layer (9.4),
and the combination of link and physical layers (9.5). Those four sections
are followed by my usual section on security (9.6), and by exercises, projects,
and notes.

9.1.3 The End-to-End Principle

Traditionally, the Internet has been based on the end-to-end principle, which
states that considerable control and responsibility should be in the hands
of the endpoint computers interfaced to the Internet’s periphery, with the
routers and other devices interior to the Internet providing very simple
packet delivery service. In terms of the protocol layering, this means that
only end computers have traditionally concerned themselves with the trans-
port and application protocols.

One virtue of the end-to-end principle is that two users can agree upon
a new application protocol without needing the cooperation of anyone else.
The ability to try new application protocols at the grassroots, and see
whether they become popular, was very important in the evolution of the
Internet up through the introduction of the web.

However, the Internet has been progressively moving away from the end-
to-end principle. I already alluded to one example: firewalls that filter at the
application layer. I will mention firewalls again in Section 9.6.2. However,
there have also been other non-security-related forces leading away from the
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end-to-end principle; I will examine one in Section 9.4.3. One upshot of
this is that today it may no longer be possible to just start using a new
application protocol with its associated port number. Traffic on the new
port number might well be blocked as it traverses the Internet.

This helps explain a popular use of web services, which I mention in
Chapter 10. This form of communications middleware is often configured to
package application programs’ messages into web traffic, in effect layering
yet another protocol on top of the web’s application-layer protocol. This ap-
proach helps circumvent obstacles to new application-layer protocols within
the Internet. For this chapter, I will stick with the traditional layers, topping
out at the application layer.

9.1.4 The Networking Roles of Operating Systems, Middle-
ware, and Application Software

Just as network protocols are layered, so too is the software that commu-
nicates using those protocols. However, the layering of networking software
does not always correspond directly to the major divisions that I focus on
in this book, between application software, optional middleware, and an
operating system.

The most common division of roles in systems without middleware has
application software responsible for the application-layer protocol, while the
operating system handles everything from transport layer on down. That
is, the API that operating systems present to application programs usually
corresponds to the services of the transport layer. This transport-layer API
is normally described as providing a socket abstraction; I will discuss socket
APIs in Section 9.3.1.

In keeping with this division of roles, most application-layer protocols
are the responsibility of application software. (For example, web browsers
and email programs take responsibility for their respective application pro-
tocols.) There are a few interesting exceptions, however:

• The Domain Name System (DNS ) maps names such as www.gustavus.edu
into numerical internet addresses such as 138.236.128.22 using an application-
layer protocol. Although it uses an application-layer protocol, it plays
a critical supporting role for many different applications. In most sys-
tems, you can best think of the DNS software as a form of middleware,
because it runs outside of the operating system kernel but supports
application software.

• Distributed file systems run at the application protocol layer but need
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to be visible through the operating system’s normal support for file
systems. Often this means that at least some of the distributed file
system software is part of the operating system kernel itself, contrary
to the norm for application-layer protocols.

• In Chapter 10, you will see that many applications are expressed in
terms of more sophisticated communication services than the socket
API. For example, application programmers may want to send mes-
sages that are queued until received, with the queuing and dequeuing
operations treated as part of atomic transactions. As another example,
application programmers may want to invoke higher-level operations
on objects, rather than just sending streams of bytes. In either case,
middleware provides the necessary communication abstractions at the
application layer, above the transport services provided by operating
systems.

9.2 The Application Layer

Typical application-layer protocols include HTTP, which is used for brows-
ing the web, SMTP (Simple Mail Transfer Protocol), which is used for send-
ing email, POP3 (Post Office Protocol–Version 3), which is used for retriev-
ing email, and IMAP (Internet Message Access Protocol), which is also used
for accessing email. Rather than examining each of these, I’ll present HTTP
as an example in Section 9.2.1. Then I’ll turn to some less-typical applica-
tion protocols that play important roles behind the scenes: the Domain
Name System, which I explain in Section 9.2.2, and various distributed file
systems, which I explain in Section 9.2.3.

9.2.1 The Web as a Typical Example

When you use a web browser to view a web page, the browser contacts the
web server using an application-layer protocol known as HTTP (Hypertext
Transfer Protocol). This protocol has a request-response form; that is, after
the browser connects to the appropriate port on the server (normally port
number 80), it sends a request and then awaits a response from the server.
Both the request and the response have the same overall format:

1. An initial line stating the general nature of the request or response

2. Any number of header lines providing more detailed information
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3. A blank line to separate the header from the body

4. Any number of lines of message body

The message body is where the actual web page being downloaded (or up-
loaded) appears. For ordinary web browsing, it is empty in the request and
non-empty in the response. A common case where a request has a non-empty
body is when you fill in a form and submit it.

To take a concrete example, let’s see how you could retrieve my home
page, http:// www.gustavus.edu/ +max/ , without the benefit of a web browser.
You can use the program called telnet to connect to the web server’s port
80 using the command

telnet www.gustavus.edu 80

Then you can type in the following three lines, the last of which is blank:

GET /+max/ HTTP/1.1

Host: www.gustavus.edu

The first of these is the request line stating that you want to get my home
page using version 1.1 of the protocol. The second is a header line, indi-
cating which web host you want to get the page from. This is necessary
because some web servers have different aliases and may serve different con-
tent depending on which host name you are using. The blank line indicates
that no more header lines are being specified.

At this point, the server should respond with a large number of lines of
output, of which the first ones will look something like

HTTP/1.1 200 OK

Date: Sun, 16 Jan 2005 01:18:19 GMT

Server: Apache

Last-Modified: Sun, 16 Jan 2005 01:18:25 GMT

ETag: W/"30ba07-b94-21857f40"

Accept-Ranges: bytes

Content-Length: 2964

Connection: close

Content-Type: text/html; charset=UTF-8

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

http://www.gustavus.edu/+max/
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<html lang="en">

<head>

<title>Max Hailperin’s home page</title>

</head>

<body>

<h1>Max Hailperin</h1>

and the last two will be

</body>

</html>

The first line of the response says that the request was OK and will be
satisfied using HTTP version 1.1. (The number 200 is a status code, which
indicates that the request was successful.) The server then sends quite a few
header lines; you can probably figure out what several of them mean. For
example, the Content-Length header indicates that my home page contained
2964 bytes at the time I tried this example. The Content-Type line describes
how the web browser should interpret the message body. In this case, it is a
text file written using HTML (HyperText Markup Language) and with the
character set being an international standard known as UTF-8 (Unicode
Transformation Format 8). The boundary between the headers and the
message body is formed by the blank line. If you are familiar with the
syntax of HTML, you can see that the body is indeed written in HTML.
The HTML format is independent of the HTTP protocol, which can be used
for transferring any kind of file; the most familiar other formats on the web
are those used for images.

The HTTP standard includes many features beyond those shown in this
one simple example. To illustrate just one more, consider sending another
request, similar to the first but with one additional header:

GET /+max/ HTTP/1.1

Host: www.gustavus.edu

If-none-match: W/"30ba07-b94-21857f40"

This time, the reply from the web server is much shorter:

HTTP/1.1 304 Not Modified

Date: Sun, 16 Jan 2005 01:19:55 GMT

Server: Apache

Connection: close
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ETag: W/"30ba07-b94-21857f40"

This corresponds with the scenario described in Section 9.1.2. The browser
(or a human using telnet to simulate a browser) is asking “please send this
web page only if it has changed since the version I previously downloaded.”
The version is identified using the ETag (entity tag) the server provided
when it sent the previous version. In this case, the version on the server
still is the same (matches the provided tag), so the server just sends a short
reply to that effect. A browser could use this to validate continuing to use
a cached copy.

9.2.2 The Domain Name System: Application Layer as In-
frastructure

The network layer takes responsibility for routing a packet of data to a spec-
ified internet address. However, the internet addresses that it understands
are numbers, encoding the destination network and the specific interface
on that network. Humans don’t generally want to use these numeric ad-
dresses; instead, they prefer to use names such as www.gustavus.edu. Thus,
no matter whether you are using HTTP to browse the web or SMTP to send
email, you are probably also using an additional application-layer protocol
behind the scenes, to translate names into numerical addresses. This proto-
col is known as the Domain Name System (DNS ), because the hierarchically
structured names such as www.gustavus.edu are known as domain names.

The Domain Name System is actually a general facility that allows ma-
chines distributed around the Internet to maintain any arbitrary mappings
of domain names to values, not just mappings of computers’ names to their
numerical internet addresses. However, for the sake of this overview, I will
concentrate on how DNS is used in this one particularly important context.

The use of domain names to refer to internet addresses is quite analogous
to the use of pathnames to refer to files, a topic I addressed in Section 8.6.3.
In the following paragraphs, I will describe four aspects of this analogy.
First, both kinds of names are hierarchical. Second, both kinds of names
can be either absolute or relative. Third, both naming systems allow one
object to directly have multiple names. And fourth, both naming systems
also allow a name to indirectly refer to whatever some other name refers to.

A domain name such as www.gustavus.edu specifies that www should be
found as a subdomain of gustavus, which is in turn a subdomain of edu.
Thus, the structure of the name is similar to a pathname from a POSIX
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file system, which might be edu/gustavus/www for the file www within the
subdirectory gustavus of the directory edu. The only two differences are
that the components of a domain name are separated with dots instead of
slashes, and that they are listed from most specific to least specific, rather
than the other way around.

In POSIX pathnames, the difference between edu/gustavus/www and
/edu/gustavus/www (with an initial slash) is that the former starts by look-
ing for edu in the current working directory, whereas the latter starts from
the root directory of the file system. These two options are called relative
and absolute pathnames. One little-known fact about the DNS is that do-
main names also come in these two varieties. The familiar domain name
www.gustavus.edu is relative, and so may or may not refer to my college’s
web server, depending on the context in which it is used. If you want to
be absolutely sure what you are talking about, you need to use the abso-
lute domain name www.gustavus.edu. complete with the dot on the end. On
the other hand, only a cruel system administrator would set up a system
where www.gustavus.edu was interpreted as www.gustavus.edu.horrible.com.
rather than the expected site. The real reason for relative domain names is
to allow shorter names when referring to computers within your own local
domain.

My discussion of file linking in Section 8.6.3 explained that the simplest
form of linking is when two names directly refer to the same file. Similarly,
two domain names can directly refer to the same internet address. In the
DNS, a domain name can have multiple kinds of information, or resource
records, each with an associated type. The domain name has a directly
specified internet address if it has a resource record of type A. (The letter A
is short for address.) As an example, the domain names gustavus.edu. and
ns1.gustavus.edu. both have type A resource records containing the address
138.236.128.18, so both of these domain names are referring directly to the
same internet address.

Recall that symbolic links (or soft links) are pathnames that do not
refer directly to a file, but rather indirectly to whatever another pathname
refers to. Similarly, the DNS supports domain names that are aliases for
other domain names. As an example, the domain name www.gustavus.edu.
currently has no type A resource record. Instead, it has a type CNAME
resource record, showing that it is an alias for www.gac.edu. Looking this
second name up in the DNS, I find that it too is an alias, with a CNAME
record referring to charlotte.gac.edu. Only this third domain name has the
actual type A record, specifying the internet address 138.236.128.22. This
internet address will be returned by a lookup operation on any of the three
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alternative domain names. The domain name at the end of a chain of aliases
is known as the canonical name, which explains why the resource record type
is called CNAME.

In order to translate a name into an address, an application program
such as a web browser uses a system component known as the resolver.
The resolver communicates using the DNS application-layer protocol with
a name server, which provides the requested information. In most systems,
the resolver is not part of the operating system kernel. Instead, it is linked
into each application program as part of a shared library. From the oper-
ating system’s perspective, the application program is engaged in network
communication with some remote system; the fact that the communication
constitutes DNS lookups is invisible. From the perspective of the application
programmer, however, the resolver is part of the supporting infrastructure,
not something that needs programming. As such, the resolver constitutes
middleware in the technical sense of that word. However, it is convention-
ally marketed as part of the same product as the operating system, not as
a separate middleware product.

The protocol used between the resolver and name server is a request-
response protocol. The resolver indicates what information it is looking
for, such as an internet address (type A resource record) for a particular
domain name. The name server responds with the requested information,
an error report, or a referral to another name server better able to answer
the question.

The details of the DNS protocol are somewhat complicated for three
reasons. One is that the system is designed to be general, not just suitable
for internet address lookups. The second is that the system is designed
to reliably serve the entire Internet. Therefore, it contains provisions for
coordinating multiple name servers, as I outline in the next paragraph. The
third is that the DNS protocol does not use ordinary lines of text, unlike
the HTTP example I showed earlier. Instead, DNS messages are encoded in
a compact binary format. As such, you cannot experiment with DNS using
telnet. Exploration Projects 9.1 and 9.2 suggest some alternate ways you
can experiment with DNS.

No one name server contains all the information for the complete DNS,
nor is any given piece of information stored in only a single name server,
under normal circumstances. Instead, the information is both partitioned
and replicated, in the following three ways:

• The hierarchical tree is divided into zones of control that are stored
independently. For example, my college maintains the information
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about all domain names ending in gustavus.edu. and gac.edu. on name
servers we control. Additional resource records within the DNS itself
indicate where the dividing lines are between zones.

• Authoritative information about names in each zone is stored on mul-
tiple name servers to provide failure tolerance and higher performance.
Secondary servers for the zone periodically check with a master server
for updates. Resource records within the DNS itself list all the au-
thoritative name servers for each zone.

• Name servers cache individual pieces of information they receive from
other name servers in the course of normal operation. Thus, when I
repeatedly access www.nytimes.com., I don’t have to keep sending DNS
queries all the way to the New York Times’s name server. Instead, my
local name server acquires a non-authoritative copy of the information,
which it can continue using for a specified period of time before it
expires.

9.2.3 Distributed File Systems: An Application Viewed Through
Operating Systems

Using HTTP, you can download a copy of a file from a remote server. De-
pending on how the server is configured, you may also be able to upload the
file back to the server after editing it. Given that the file I am currently
editing (containing this chapter) is stored on a centralized server, I could
be making use of this download-edit-upload process. Instead, I am taking
advantage of a more convenient, more subtle, kind of application-layer pro-
tocol, a distributed file system. In order to edit this chapter, or any other
file stored on the central server, I simply access it by pathname, just the
same way I would access a file on the local disk drive. Through some behind-
the-scenes magic, certain parts of the file system directory tree are accessed
over the network from the server. Ordinary file system operations, such
as reading and writing, turn into network messages using the appropriate
application-layer protocol.

Distributed file systems are most commonly used within the boundaries
of a particular organization, unlike the protocols previously discussed. Per-
haps for this reason, several different distributed file system protocols have
remained viable, rather than a single standard dominating. Two of the
most popular are CIFS (Common Internet File System) and NFS (Network
File System). CIFS has primarily been championed by Microsoft and is
commonly found in organizations with a substantial number of Microsoft
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Windows systems. It frequently is still referred to by its previous name,
the SMB (Server Message Block) protocol. (The individual messages sent
by CIFS continue to be called Server Message Blocks.) NFS was developed
by Sun Microsystems and is primarily used at sites where UNIX and Linux
systems dominate. To confuse nomenclature further, one specific feature of
CIFS is called DFS, for Distributed File System. I won’t discuss that feature
here and will continue to use the phrase with lower-case letters to refer to
distributed file systems in general.

As I will describe shortly, the designs of CIFS and NFS differ in some
important regards. However, they also have quite a bit in common. In par-
ticular, in each case the client software needs to be at least partially located
within the operating system kernel. When you use a pathname that extends
into a directory tree supported by CIFS or NFS, the operating system kernel
needs to recognize this fact and transfer control to the appropriate network
client code, rather than the code that handles local file systems. The kernel
can do this using a general purpose VFS (virtual file system) mechanism,
as described in Section 8.8. The VFS mechanism delegates responsibility
for file operations (such as reading or writing) to kernel code specific to the
distributed file system. That kernel code may itself carry out the appro-
priate application-layer protocol exchange with a remote server, or it may
just capture the details of the attempted file operation and pass them up
to a specialized process outside the kernel, which actually does the network
communication.

NFS is a pure request-response protocol, in the same sense as HTTP and
DNS are: each interaction between client and server consists of the client
sending a request first, then the server sending a response. CIFS, on the
other hand, has a more complicated communication structure. Ordinary
operations (such as reading from a file) are accomplished through messages
paired in request-response form. However, the server can also spontaneously
send a message to the client, without any request, to notify the client of some
event of interest, such as that a file has changed or that another client wishes
to access the same file. These notifications allow CIFS clients to cache file
contents locally for performance, without needing to sacrifice correctness.

Another key difference in the two systems’ designs concerns the amount
of information servers maintain about ongoing client operations. The differ-
ence is most clear if you consider reading a file. In CIFS, the client invokes
an operation to open the file for reading, then invokes individual read op-
erations, and then invokes a close operation. These operations are much
like the open, pread, and close operations described in Section 8.3. By
contrast, NFS has no open and close operations; each read operation stands
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completely on its own, specifying the file that should be read as well as the
position within it. One virtue of this “stateless” design is that the interac-
tion between client and server can naturally tolerate either party crashing
and being rebooted. On the other hand, a stateless design cannot readily
support file locking or keeping client-side file caches up to date.

9.3 The Transport Layer

As mentioned earlier, the transport layer provides port numbers so that mul-
tiple communication channels can share (be multiplexed on) each internet
address. Of the two transport-layer protocols common on the Internet, one
provides essentially no services other than this multiplexing. This primitive
transport protocol is called UDP (User Datagram Protocol). Like the un-
derlying Internet Protocol, it makes an effort to deliver a chunk of data to a
destination anywhere on the Internet, but does not guarantee reliability or
that ordering will be preserved.

The other major transport-layer protocol—the one at work every time
you browse a web page or send an email message—is the Transmission Con-
trol Protocol (TCP). This protocol does far more than provide port numbers;
it provides the application layer with the ability to open reliable connections
through which bytes can be streamed. A program using TCP opens a con-
nection from a local port number to a remote port number at a specified
internet address. Once the connection is open, each side can transmit bytes
of data into its end of the connection and know that they will be received
at the other end in order, without duplications or omissions. When the two
parties are done communicating, they close the connection. In the HTTP
examples of Section 9.2.1, the telnet program was used to open a TCP
connection to the web server’s port 80. The characters typed in for the
request were streamed over the connection and hence received intact by the
web server. Similarly, the web server’s response was received by telnet and
displayed.

The services provided by these transport-layer protocols are not so conve-
nient for application programming as the higher-level messaging and distributed-
object services I will present in Chapter 10. However, they are convenient
enough to be widely used in application programming, and they are gen-
erally what operating systems provide. Therefore, in Section 9.3.1, I will
present an overview of the socket application programming interfaces used
to take advantage of these services. Thereafter, in Section 9.3.2, I will ex-
plain the basics of how TCP works. Finally, in Section 9.3.3 I will sketch
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the evolution of TCP into more modern versions, proposed future versions,
and possible outright replacements.

9.3.1 Socket APIs

A socket is an object used as an endpoint for communication. Several dif-
ferent APIs revolve around the socket abstraction, each forming a variation
on a common theme. The most important three are the POSIX socket API,
the Windows socket API (known as Winsock), and the Java socket API. I
will discuss all three briefly, but will give programming examples only for
Java, as it is the easiest to use.

Ordinarily, each socket is associated with a local internet address and
port number; that is, the socket knows its own computer’s address and its
own port number. If the socket is being used for a TCP communication
stream, it will also be associated with a remote internet address and port
number, identifying the communication partner. The local association is
known as a binding ; the socket is bound to its own address and port number.
The remote association is known as a connection; the socket is connected to
a partner.

Sockets used for UDP are not connected to partners; each time a packet
of data, known as a datagram, is communicated using the socket, a remote
internet address and port number need to be provided specifically for that
datagram. As a convenience, if the same remote internet address and port
number are to be used repeatedly, socket APIs generally allow the infor-
mation to be provided once and for all using the connect operation, even
though no real connection is formed. The address and port number are
simply stored as default values for further datagram operations.

Each socket can be in any of several different states. The diagrams in
Figures 9.4, 9.5, and 9.6 show three different life cycles through the states:
one for datagram sockets (used with the UDP protocol), one for client-side
stream sockets (initiating TCP connections), and one for server-side stream
sockets (accepting incoming TCP connections). Several of the transitions,
marked in the diagrams with dashed lines, do not require explicit operations
in the Java API. The states are as follows:

• When freshly created, the socket may be unbound, with no address
or port number. In this state, the socket does not yet represent a
genuine communication endpoint but is just a hollow shell that has
the potential to become an endpoint once bound. In the POSIX and
Winsock APIs, all sockets are created unbound and are then bound
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Unbound Bound
bind

Closed
close

send

receive

Figure 9.4: This state diagram shows the life cycle of datagram sockets
used for sending or receiving UDP datagrams. In the Java API, the class
java.net.DatagramSocket is used for this purpose, and binding happens
automatically as part of the constructor.

Bound Connected
connect

Unbound
bind

Closed
close

send

receive

Figure 9.5: This state diagram shows the life cycle of client-side stream
sockets used to initiate TCP connections. In the Java API, the class
java.net.Socket is used for this purpose, and binding and connection or-
dinarily both happen automatically as part of the constructor.

Bound Listening
listen

Unbound
bind

Closed
close

accept, which
also creates

Connected Closed
close

receivesend

Figure 9.6: This state diagram shows the life cycle of server-side stream
sockets used to accept TCP connections. In the Java API, the class
java.net.ServerSocket is used for this purpose, and the bind and listen
operations ordinarily are performed automatically as part of the construc-
tor. Each time the accept operation succeeds, a new connected socket is
returned, which in the Java API is an instance of java.net.Socket.
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using a separate operation. In the Java API, you can create an un-
bound socket if you really want to (and then later bind it), but the
normal constructors for the socket classes do the binding at the time
the socket is created, saving a step.

• A socket can be bound but neither connected nor listening for incom-
ing connection attempts. For UDP, datagrams can be sent or received
in this state. For stream sockets, this state is only used as a stepping
stone to the connected or listening state. In the Java API, the tran-
sition to the connected or listening state is generally accomplished at
the time the socket is created, whereas in the POSIX and Winsock
APIs, the connect and listen operations are explicit.

• A bound socket can be connected to a remote address and port number,
forming a TCP connection over which bytes can be streamed in each
direction.

• Alternatively, a bound socket can be listening for incoming connection
attempts. Each time the application program accepts an incoming
connection attempt, the socket remains in the listening state. A new
socket is spawned off, bound to the same local address and port number
as the original listening socket, but in the connected state rather than
the listening state. The new connected socket can then be used to
communicate with the client that initiated the accepted connection.

A server program can in this way wind up with lots of sockets associ-
ated with the same local port number—one listening socket and any
number of connected sockets. The TCP connections are still kept dis-
tinct, because each TCP connection is identified by four numbers: the
internet addresses and port numbers on both ends of the connection.

• Finally, a socket should be closed when it is no longer needed. The
socket data structure becomes a vestige of the former communication
endpoint, and no operations can be legally performed on it.

To illustrate how a TCP server accepts incoming connections and then
communicates using the resulting connected sockets, consider the Java pro-
gram in Figure 9.7. This server contains an infinite loop that accepts only
one connection at a time, reading from that connection, writing back to it,
and then closing it before accepting the next connection. This would not be
acceptable in a performance-critical setting such as a web server, because a
slow client could hold all others up, as you can demonstrate in Exploration
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import java.io.*;

import java.net.*;

class Server {

public static void main(String argv[]) throws Exception {

String storedMessage = "nothing yet";

ServerSocket listeningSocket = new ServerSocket(2718);

while(true) {

Socket connectedSocket = listeningSocket.accept();

BufferedReader fromClient = new BufferedReader

(new InputStreamReader(connectedSocket.getInputStream()));

PrintWriter toClient = new PrintWriter

(connectedSocket.getOutputStream());

String newMessage = fromClient.readLine();

toClient.println(storedMessage);

storedMessage = newMessage;

toClient.close();

fromClient.close();

connectedSocket.close();

}

}

}

Figure 9.7: This message-storage server listens on port 2718 for connections.
Each time it gets one, it reads a line of text from the connection to use as
a new message to store. The server then writes the previous message out to
the connection. For the first connection, the message sent out is nothing

yet, because there is no previous message to deliver.
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Project 9.5. In Programming Project 9.1, you will modify the server to
spawn off a concurrent thread for each incoming client. Even sticking with
the unmodified code, though, you can see that there may be many sockets
associated with port 2718 as the program runs: one listening socket (of class
ServerSocket) that exists the whole time the server is running, and a whole
succession of connected sockets (of class Socket), one for each time a client
connects. In a multithreaded version, several connected sockets could be in
existence at the same time, all on port 2718.

If you compile and run the Java code from Figure 9.7, you can test out
the server in the same way as shown in Section 9.2.1 for HTTP. That is, you
can use the telnet program to connect to port 2718 on whatever machine is
running the server, just as there I connected to port 80 on www.gustavus.edu.
Once you connect with telnet, type in a line of text. You should see the
nothing yet response and then see the connection close. Connect again
(from the same or a different machine) and repeat the procedure. This
time you should see the line of text you previously entered come back to
you. If you find you can’t connect to port 2718, there is probably a security
firewall blocking your connection. The simplest workaround would be to
limit yourself to testing connections from the same machine that is running
the server program; connect using the special hostname localhost.

Rather than using telnet for the client side of this interaction, you could
use a program written specifically for the purpose. This would demonstrate
the other way TCP sockets are used, to connect from within a client program
to a server’s port. The program in Figure 9.8 directly forms a connected
socket, bound to an arbitrary system-chosen port on the local host but
connected to the specified host’s port 2718. To try this program out, you
could compile it and then run a command like

java Client localhost test-message

You should see in response whatever previous message was stored in the
server. Moreover, repeating the command with a new message should re-
trieve test-message.

The preceding Java examples send only a single line of text in each
direction over each connected socket. However, this is just a feature of
the example I chose; in effect, it defines the nonstandard application-layer
protocol being used. The same TCP transport layer (accessed through Java’s
socket API) could equally well carry any number of lines of text, or other
sequences of bytes, in each direction. You would just need to insert a loop at
the point in the program that reads from or writes to the connected socket.
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import java.io.*;

import java.net.*;

class Client {

public static void main(String argv[]) throws Exception {

if(argv.length != 2){

System.err.println("usage: java Client hostname msgToSend");

System.exit(1);

}

String hostname = argv[0];

String messageToSend = argv[1];

Socket connectedSocket = new Socket(hostname, 2718);

BufferedReader fromServer = new BufferedReader

(new InputStreamReader(connectedSocket.getInputStream()));

PrintWriter toServer = new PrintWriter

(connectedSocket.getOutputStream(), true);

toServer.println(messageToSend);

String retrievedMessage = fromServer.readLine();

System.out.println(retrievedMessage);

toServer.close();

fromServer.close();

connectedSocket.close();

}

}

Figure 9.8: This client program receives a hostname and a textual message
string as command line arguments. It connects to the server running on the
specified host’s port 2718 and sends it a line of text containing the message.
It then reads a reply line back and prints it out for the user to see.
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For example, you could write an HTTP client or server in Java using this
sort of code.

9.3.2 TCP, the Dominant Transport Protocol

You now understand how TCP can be used, through a socket API, to pro-
vide reliable transport of a byte stream in each direction over a connec-
tion between ports. Now I can take you behind the scenes and give you
a brief overview of some of the techniques TCP uses to support reliable
ordered byte streams. This will help you appreciate some of the difficult
performance-critical issues. In this subsection, I will sketch TCP in its most
well-established form; these TCP mechanisms are generally implemented
within each operating system’s kernel. Recent enhancements, as well as
proposals for further change, are the topic of Section 9.3.3.

As the application program uses the kernel’s socket API to send bytes,
the kernel stores those bytes away in an internal buffer. From time to time,
it takes a group of consecutive bytes from the buffer, adds a header of
identifying information to the beginning, and sends it over the network to
the receiver using the network layer, that is, IP. The chunk of bytes with a
header on the front is called a segment. Each connection has a maximum
segment size, typically no larger than 1460 bytes, exclusive of header. Thus,
if the application program is trying to send a large number of bytes at
once, the kernel will break it into several segments and send each. If the
application program is sending only a few bytes, however, the kernel will
wait only a little while for more bytes, and failing to get any, will send a
small segment. One performance bottleneck is the copying of bytes from the
application program to the kernel’s buffer, and generally at least once more
before reaching the network interface card. Systems optimized for network
performance go to great lengths to reduce the number of times data is copied.

The header on each segment provides the port number for each end of
the connection. It also specifies the position the segment’s bytes occupy
within the overall sequence being transmitted. For example, the first seg-
ment header might say “these are bytes 1 through 1000,” and then the
second segment header would say “these are bytes 1001 through 2000.” The
receiving code (also part of an operating system kernel) needs to pay atten-
tion to these sequence numbers and use them to deliver the bytes correctly
to the application program that is using the socket API to read the data.
Segments may arrive over the network out of order, for example, by taking
two different routes. Thus, the kernel needs to store the arriving data in
a buffer and return it to the application program in the order of sequence
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numbers, not in the order it arrives. As on the sending side, the trick is
to do this without spending too much time copying data from one place to
another.

In addition to arriving out of order, some segments may not arrive at all,
because the network layer may occasionally lose a packet. To overcome that
problem, TCP has mechanisms for retransmitting segments. The sender
must continue to buffer each segment until its receipt is acknowledged, in
case it needs to be retransmitted. Also, a segment believed to be lost may
be retransmitted, and then turn out to not have been lost after all, but only
delayed. Thus, the receiver needs to cope with duplicate segments.

Performance would be unacceptable if TCP transmitters sent only one
segment at a time, waiting for acknowledgment before sending another.
However, it would not be a good idea to allow arbitrarily many segments
to be sent without waiting for acknowledgment. If a fast computer were
sending to a slow computer, the receive buffer space could easily be over-
whelmed. Thus, one of the many features TCP provides behind the scenes
is flow control, which is to say, a receiver-controlled limit on how much
unacknowledged data the sender is allowed to have outstanding at any time.

In traditional TCP, each acknowledgment contains a single number, n,
to indicate that bytes 1 through n have been successfully received and that
byte n+ 1 hasn’t been. This style of acknowledgment, known as cumulative
acknowledgment, is rather limited. Suppose the sender transmits seven seg-
ments of 1000 bytes each and only the first, third, fifth, and seventh arrive.
The receiver will see four incoming segments and will send four acknowl-
edgments, all saying bytes 1 through 1000 have been received. The sender
will know that those bytes were received and have a pretty good clue that
bytes 1001 through 2000 were not. It will also have a clue that three of the
subsequent five segments were received, but it will have no idea which three.

The preceding example illustrates one scenario under which a TCP
sender will retransmit a segment. Having received an acknowledgment of
the first 1000 bytes and then three duplicates of that same acknowledg-
ment, the sender is justified in assuming the second segment was lost and
retransmitting it. The rules of TCP specify waiting for three duplicate ac-
knowledgments, because one or two can easily occur simply from segments
arriving out of order. That is, any duplicate acknowledgment indicates
a hole has opened up in the sequence number order, but if segments are
arriving out of order, the hole may quickly get filled in without needing
retransmission.

Unfortunately, to provoke the triple duplicate acknowledgment, subse-
quent segments need to be transmitted. If the sender has no more segments
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to transmit, or is not allowed to send any more due to flow control restric-
tions or the congestion control restrictions I will describe shortly, then no
duplicate acknowledgments will be triggered. Thus, TCP senders need to
fall back on some other means of detecting lost segments; they use a timer.
If no acknowledgment is received in a conservatively long time, then the seg-
ment is assumed lost. This conservative waiting period can cause substantial
performance degradation.

A final challenge for TCP is controlling congestion that occurs at the
switches (including routers) within the Internet. Each link leading out from
a switch has a particular rate at which it can receive new data. Data destined
for a particular outbound link may be coming into the switch from any
number of the inbound links. If the total rate at which that data is flowing
into the switch exceeds the rate at which it can be sent on the outbound link,
then the switch will start to build up a queue of data awaiting forwarding.
If the imbalance is only temporary, the queue will build up a little, then
drain back down. However, if the imbalance persists, then the queue will
grow long, creating lengthy delays, and then eventually get so full that the
switch starts discarding packets. This phenomenon is known as congestion.

Congestion is not good, because it causes packets of data to be delayed
or lost. Because TCP interprets unreasonably long delays as packet losses,
either delays or outright losses can cause TCP to retransmit segments. This
might even make the problem worse by sending more data to the already
congested switch. Thus, TCP contains congestion-control features, which
act to throttle back the rate at which it sends segments (new or retransmit-
ted) when it detects packet losses. The theory is that most packet loss is
caused by switches with full queues and therefore can be interpreted as a
sign of congestion.

The details of congestion control are somewhat complicated. The most
important facts to know are that it occurs independently in each TCP con-
nection, and that newly opened connections start with a very low trans-
mission rate, ramping up until the rate that causes congestion is detected.
Thus, application performance can be improved by using multiple TCP con-
nections in parallel and by sending a lot of data over each connection rather
than repeatedly opening new connections for a little data apiece. Modern
web browsers obey both these rules, using parallel and persistent connec-
tions. Parallel connections are a mixed blessing, because they constitute an
attempt to unfairly compete with other Internet users, creating the potential
for an arms race.
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9.3.3 Evolution Within and Beyond TCP

Traditional TCP detects data loss through a combination of timeouts and
triple duplicate cumulative acknowledgments. This detected data loss serves
as the sign of congestion. TCP also responds to the detected data loss with
retransmissions in order to ensure that all data is reliably delivered. Ev-
ery one of these three design decisions has been challenged by networking
researchers. That is, there are systems that detect loss in other ways, that
detect congestion other than through loss, and that ensure reliability other
than through retransmission. Some of the results are already partially de-
ployed, whereas others remain research proposals. Some innovations also
discard TCP’s basic service model of the bidirectional byte stream. In this
subsection, I will briefly overview a few of these trends in order to make the
point that network protocols are not timeless truths, but rather are designs
that are subject to change.

As network hardware has improved, the rate at which bits can be trans-
mitted has greatly increased. However, the time needed for those bits to
travel to the other side of the world and for acknowledgment bits to travel
back has not shrunk. The consequence is that a computer may now trans-
mit quite a few bits before getting any acknowledgment back. As a result,
it is now common to have large numbers of unacknowledged TCP segments.
In this situation, the weakness I mentioned for cumulative acknowledgment
starts to become significant. There may well be more than one lost segment,
and it would be nice to know exactly which ones were lost. For this reason,
a selective acknowledgment feature was added to TCP, in which the receiver
can provide the sender more complete information about which bytes have
been received. This provides a new way to detect data loss.

In whatever manner data loss is detected, it likely stems from conges-
tion. That does not mean, however, that the TCP sender needs to wait
for a lost segment in order to sense congestion. If it could sense the con-
gestion sooner, it could avoid the loss entirely. One way this can be done,
deployed in some parts of the Internet, is for the routers to provide Explicit
Congestion Notification (ECN ). That is, they send an overt signal to the
TCP transmitters to throttle back, rather than needing to implicitly code
that signal by discarding a packet. Another approach, which has been ex-
perimented with, is for the TCP sender to notice that acknowledgments are
starting to take longer and infer that a queue must be building up. This is
called TCP Vegas.

Lost segments don’t just signal congestion; they also prevent data from
being delivered, necessitating retransmissions. However, there is another
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approach to ensuring that all data is delivered, even if some packets are
lost. Namely, the data can be encoded into a redundant format, in which
any sufficiently large subset of the packets contains enough information to
allow all the data to be reconstructed. This concept is best explained by
a highly simplified example, shown in Figure 9.9. This general approach is
known as forward error correction using an erasure code. More sophisticated
versions have been used to build high-performance systems for streaming
large files, such as videos, using UDP.

One final area of change is in the service provided by TCP. An alternative
transport protocol known as SCTP (Stream Control Transmission Protocol)
is a proposed Internet standard that would offer similar reliable delivery and
congestion control to TCP, but would go beyond the single bidirectional byte
stream. An SCTP sender can transmit a stream of messages, that is, entire
chunks of data akin to UDP datagrams, and have them delivered not only
reliably and in their correct order, but also with the boundaries between
them preserved, rather than all run together into an undifferentiated byte
stream. Moreover, the SCTP connection can carry more than one stream
in each direction. The messages on each individual stream are delivered
in order, but a lost message on one stream doesn’t hold up the delivery of
messages on other streams. Unlike the trends mentioned previously, which
affect only low-level details, if SCTP becomes popular, it will be necessary to
rethink the APIs that constitute the interface between application programs
and operating systems.

9.4 The Network Layer

The network layer delivers a packet of data to the appropriate destination
computer on an internet. In this section, I will highlight a few aspects of this
layer. First, I will explain the difference between the two versions of IP and
explain how addresses are structured for the currently dominant version,
IPv4. Second, I will give an overview of how routers forward packets along
appropriate paths to reach their destinations. Finally, I will explain Network
Address Translation (NAT), a technology that has considerable utility, but
which is at odds with the original end-to-end architectural principle of the
Internet.

9.4.1 IP, Versions 4 and 6

Each packet of data sent on the Internet has a header formatted in accor-
dance with the Internet Protocol (IP). If the packet contains a TCP segment
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10110110
00100111
10100010
01001011
01111000

Four data segments

Each column has an
even number of 1s, so
if any segment is lost,
it can be reconstructed
to fit that pattern.

Parity segment

Figure 9.9: Sending redundant data allows loss to be tolerated. Suppose
four segments of data are to be sent; for simplicity, here each segment is
only 1 byte long. Suppose the loss rate is low enough that it is unlikely two
segments will be lost. Rather than waiting to see which one segment is lost,
and then retransmitting it, a sender can transmit the four data segments
and a parity segment, each with a sequence number in the header. Any one
of the five can be lost, and yet all four data segments will be deliverable,
because the lost segment can be reconstructed.

or UDP datagram, the TCP or UDP header follows the IP header. Each
packet starting with an IP header is known as an IP datagram. Thus, an
IP datagram can contain a UDP datagram. Because this is confusing, I will
stick with the word “packet” when discussing IP and reserve “datagram”
for UDP.

The most important pieces of information in the IP header are as follows:

• The version of IP being used, which governs the format of the remain-
ing header fields; currently version 4 is dominant and version 6 is in
limited use (version 5 does not exist)

• The internet address from which the packet was sent

• The internet address to which the packet should be delivered

• A code number for the transport-layer protocol, indicating whether
the IP header is followed by a TCP header, UDP header, or whatever
else

Among the other header fields I will not discuss are some that support
optional extensions to the basic protocol.

The next-generation protocol, IPv6, differs from the currently dominant
IPv4 in two principal ways. First, the source and destination internet ad-
dresses are much larger, 128 bits instead of 32. This should greatly ease as-
signing internet addresses to ubiquitous devices such as cell phones. Second,
IPv6 was designed to support security features, protecting packets from in-
terception, alteration, or forgery. However, these features have in the mean-
time become available as an optional extension to IPv4, known as IPsec.
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Partially for this reason, the transition to IPv6 is happening exceedingly
slowly, and IPv4 is still by far the dominant version.

As I explained in Section 9.1.1, an internet address contains two compo-
nents: an identifier for a particular network and an identifier for a specific
interface on that network. (My analogy in that section was with “Max
Hailperin, Gustavus Adolphus College.”) Given that IPv4 addresses are 32
bits long, you might ask how many of these bits are devoted to each pur-
pose. For example, does the address contain a 16-bit network number and a
16-bit interface number? Unfortunately, the answer to this question is not
so simple.

Each IPv4 address has a prefix, some number of bits long, that identifies
the network, with the remainder of the 32 bits identifying the interface
within the network. However, the length of the network prefix varies from
network to network, so that internet addresses are not partitioned into their
two components in a uniform way. The motivation for this awkward design
is that the Internet needs both to support a large number of networks (more
than 216, for example) and also some large networks (some containing more
than 216 interfaces, for example).

The conceptually simple solution to this problem would be to use larger
fixed-format addresses, perhaps containing a 32-bit network number and a
32-bit interface number. However, the designers of IPv4 decided to stick
with a total of 32 bits, because this address size was already in place from
an early fixed-format version of internet addressing, in which the network
identifier was always 8 bits long and the interface identifier 24 bits. The
designers considered it more important to stick with their prior address size,
32 bits, than with their prior design concept, that the bits be partitioned in
a uniform way. Thus, they made the design choice to cram all addresses into
32 bits by allowing a flexible division. This allows both for a small number
of large networks (with short network prefixes) and a large number of small
networks (with long network prefixes).

IPv4 addresses are conventionally written in dotted decimal format, in
which the 32-bit address is divided into four 8-bit components, and each of
the 8-bit components is translated into a decimal number. The four decimal
numbers are written with dots between them. As an example, my computer’s
internet address is 138.236.64.64. Translating 138, 236, 64, and 64 from
decimal to binary produces 10001010, 11101100, 01000000, and 01000000.
Thus, my internet address in binary is 10001010111011000100000001000000.

Of these 32 bits, the first 21 identify the network for my college’s de-
partment of mathematics and computer science, whereas the remaining 11
identify my specific computer on that network. My computer’s operating
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system kernel is aware not only of its own internet address, but also of this
division into 21 bits and 11. The latter fact is stored as a mask, which in my
case is 255.255.248.0. If you translate that from dotted decimal to binary,
you will see that the first 21 bits are 1s, whereas the last 11 bits are 0s.

The kernel uses this information whenever it sends out an internet packet.
It compares the destination address to its own address, paying attention
only to the prefix specified by the mask. Thus, in my case, the kernel checks
whether the first 21 bits of the destination address are the same as my
own. If so, the destination is on my own network, and my computer’s kernel
should send the data directly, using my network’s own link-layer addressing
mechanism.

If, on the other hand, the destination is outside my network, then the
kernel should send the packet to the gateway router leading from my local
network to the outside world. At the link layer, the kernel will send the
packet out with the gateway router’s network address, though it will still
have the ultimate destination’s internet address within the IP header.

9.4.2 Routing and Label Switching

In the ordinary functioning of the Internet, no entity actually selects a route
for a packet of data to follow, in the sense of planning the entire route
in advance. Instead, each time the packet arrives at a router, that router
decides which neighboring router to forward the packet to. The overall route
emerges as the composite result of all these local decisions.

When a router needs to forward a packet, it decides which neighboring
router should be next by consulting its forwarding table. Each entry in the
forwarding table specifies an internet address prefix and what the next router
should be for that prefix. Given this large table, the router’s forwarding
decision can be made rather rapidly, because it just requires a table lookup.
The one problem is that the entries in the table are keyed by variable-length
prefixes, making the lookup operation more complicated than would be the
case with fixed-length keys.

One other limitation of traditional internet routing, beyond the need to
look up variable-length prefixes, is that all traffic for the same destination
network gets forwarded to the same next router. Large service providers in
the core of the Internet would prefer more flexible traffic engineering with the
ability to send some of the traffic through each of several alternative routes.
These same core providers are also the ones for whom expensive lookup
operations on variable-length prefixes are most burdensome, because their
routers need to switch traffic at a very high rate.
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In order to address both these issues, some Internet service providers,
particularly in the core of the Internet, are moving away from traditional
IP routers to label switching routers using Multiprotocol Label Switching
(MPLS ). A label switching router looks up the next router, not using a
variable-length prefix of the destination address, but instead using a fixed-
length label that has been attached to the packet; MPLS specifies the stan-
dard format for this labeling.

When an IP packet first reaches a label switching router, the router
attaches a label to it based on both the destination address and any traffic
engineering considerations. Once the packet is labeled, it can be forwarded
from label switching router to label switching router any number of times,
based only on the label. When the packet is finally passed to a traditional
router, the label gets stripped off.

With either approach, the performance-critical task of a router is for-
warding individual packets based on a table lookup operation. However,
the routers are also engaged in another less time-sensitive activity. Namely,
the routers are constantly rebuilding their forwarding tables to reflect the
most recent information they have about the Internet. They exchange in-
formation with one another using routing protocols. The study of routing
protocols, and of approaches to generating forwarding table entries, is quite
interesting, but I will leave it for networking texts.

9.4.3 Network Address Translation: An End to End-to-End?

Like many people, I have a network within my home, which uses the Internet
Protocol. Moreover, from any of the computers on this network, I can open a
TCP connection to any computer on the Internet. For example, I can browse
any website. However, my home network is not a constituent network of the
Internet. This situation, which is actually quite typical for home networks,
results from my use of Network Address Translation (NAT ) within the router
that connects my home network to my service provider’s network. NAT is a
technology that allows an entire network (or even an entire private internet)
to pose as a single computer on the Internet. No matter which of my home
computers connects to an external site, the external site will see the same
source internet address, the one address that represents my whole network.

Each computer on my home network has its own private IP address;
for example, one is 192.168.0.100 and another is 192.168.0.101. All packets
on my home network use these addresses. However, as the router forwards
packets out from the home network to the service provider, it modifies the
packets, replacing these private IP addresses with the single public internet
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address my service provider assigned me, which is 216.114.254.180.
If all the NAT router did was to change the packets’ source addresses,

chaos would result. Recall that each TCP connection is uniquely identified
by the combination of four values: the source and destination addresses and
port numbers. Suppose I start browsing www.gustavus.edu on one home
computer at the same time my wife does so on another of our home com-
puters. Each of us is therefore opening a TCP connection with destination
address 138.236.128.22 and destination port number 80. My source address
starts out as 192.168.0.100, and my computer picks a source port number
it is not otherwise using, perhaps 2000. My wife’s source address starts out
as 192.168.0.101, and her computer also picks a source port. Perhaps by
coincidence it also picks 2000. Within our home network, our two TCP con-
nections are distinguishable because of our two different IP addresses. How-
ever, outside the home network is another issue. If the NAT box rewrites
our packets so both have source address 216.114.254.180 and leaves both our
port numbers as 2000, then it will have combined what should have been
two separate TCP connections into one.

To get around this problem, the NAT router rewrites our packets’ source
port numbers (in the TCP headers) as well as the source addresses (in the
IP headers). Internally to our network, we have distinct addresses but may
have coincidentally identical port numbers. Externally, we share a common
address, but the NAT router makes sure we use different port numbers. For
example, it might assign me port number 3000 and my wife port number
4000. Thus, the router would make two entries in a table for its own later
reference. One entry would show that it should map all internal packets
destined for the web server from address 192.168.0.100 and port number
2000 into external packets with address 216.114.254.180 and port number
3000. The other entry would show that traffic to the web server from internal
address 192.168.0.101 with port number 2000 maps into external address
216.114.254.180 with port number 4000. Figure 9.10 illustrates this scenario.

Luckily, port numbers are not a scarce resource. The TCP header fields
for source and destination port numbers are each 16 bits in size, yet com-
puters do not ordinarily use anywhere near 216 ports apiece. Therefore, the
NAT router has no problem assigning distinct external port numbers for all
the ports in use by any of the computers on the home network.

The NAT router has one further essential function. It must also rewrite
in the reverse manner each packet coming in from the Internet at large to
the private network. For example, if a packet arrives with source address
138.236.128.22, source port 80, destination address 216.114.254.180, and
destination port 3000, then the NAT’s table will show that this belongs to
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www.gustavus.edu

Home computers

192.168.0.100

192.168.0.101

216.114.254.180

NAT router
with the table
shown below

138.236.128.22
2000

3000

4000
2000

80

80

Internal address

192.168.0.100
192.168.0.101

Internal port

2000
2000

External address

216.114.254.180
216.114.254.180

Remote address

138.236.128.22
138.236.128.22

Remote port

80
80

External port

3000
4000

Figure 9.10: A NAT router rewrites port numbers as well as addresses so
two computers can share a single public address.

my connection, and so the NAT will modify the packet to show destination
192.168.0.100 with port 2000. By the time the packet reaches my computer,
it will look as though the web server was directly communicating with me
using my private address.

What happens if an external computer wants to initiate a TCP connec-
tion to one of my home computers? In the particular case of my home, it
is out of luck. My NAT router is configured to forward only inbound pack-
ets that come as part of a connection initiated from the private network.
However, the answer might be somewhat different on another network us-
ing a NAT router. Consider, for example, a business that chooses to use
a NAT router. The business would allow outgoing connections from all its
computers, just as I do at home. These outgoing connections would cre-
ate temporary entries in the router’s table of rewriting rules, just like in
my router. However, the business would also allow incoming connections to
port 80 (the standard HTTP port) for its main web server and to port 25
(the standard SMTP port) for its main email server. It would do this by
configuring the NAT router with two permanent rewriting rules. Any pack-
ets coming to the business’s public address on port 80 should get rewritten
to the web server’s private address, while retaining port 80. Any packets
coming to the public address on port 25 should get rewritten to the email
server’s private address, while retaining port 25.

This example illustrates one of the problems with NAT routing, stem-
ming from its violation of the end-to-end principle. Suppose someone within
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the business wants to start offering a new kind of Internet service using a
new application-layer protocol that listens on a new port number. For this
to work, the corporate network administrator would need to make a new
entry in the NAT router’s table, like the two for the web and email servers.
This is a significant stumbling block for introducing new services. This is one
reason why many services today are packaged inside HTTP traffic, directed
to the usual port 80.

NAT routing has other problems as well. One of the fundamental ones
is that IPsec is designed to prevent packets from being altered in transit,
but NAT relies on doing exactly that. A technique for working around
this difficulty has recently been developed, but it does at least introduce
additional complexity.

Despite these problems, NAT routing is heavily used and becomes more
so every day. The principal reason is that internet addresses are expensive
and so are worth sharing. The negative consequences are ameliorated by
the fact that most network administrators would prefer to put most internal
computers off limits to external access anyhow, for security reasons.

9.5 The Link and Physical Layers

When you plug an Ethernet cable into a socket, the plug snaps into the
socket because it is the right size. When your computer starts sending high
and low voltages over that cable, they are high enough and low enough to
be recognized as 1 and 0 by the equipment on the other end, but not so
extreme as to fry that equipment. These are examples of issues addressed
by the physical layer. Various physical-layer standards exist for Ethernet
over fiber optics, Ethernet over twisted pairs of copper wires, and so forth.

Even granted that the physical layer can get bits from one end of a link to
the other, there are still problems to solve. For example, how do computers
on the local network address data to each other? Presumably, each chunk
of data (known as a frame) needs to have a header that specifies a source
address and destination address. However, suppose you plug a computer
into a network, and it starts immediately hearing 1s and 0s, having come in
on the middle of a frame. It should start paying attention at the start of the
next frame. How can it recognize the boundary between frames? Perhaps
there is some definite minimum space of silence between frames or some
recognizable signal at the beginning of each frame. Shared links (like radio
channels) pose another problem: how can the various computers take turns,
rather than all transmitting at once? These issues of addressing, framing,
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and taking turns are concerns at the link layer, which is also sometimes
known as the data link layer.

Computer systems have hardware devices that support both the link and
physical layers. The operating system kernel provides this hardware with a
frame of data to deliver, complete with the address of the recipient on the
local network. The hardware does the rest. Conversely, the hardware may
interrupt the operating system to report the arrival of an incoming frame.

Most of the issues at the link and physical layer have no direct bearing
on operating systems or other software. The biggest exception is address-
ing. The two common kinds of networks (Ethernet and Wi-Fi) use 48-bit
addresses that are totally independent from the 32-bit internet addresses.
Thus, whenever the operating system sends out a packet of data to an inter-
net address, and the address’s prefix shows that it is on the local network,
the kernel needs some mechanism for looking up the corresponding 48-bit
hardware address, commonly known as a MAC (Media Access Control) ad-
dress.

The kernel discovers MAC addresses using a network protocol called
ARP (Address Resolution Protocol). The kernel broadcasts a request to all
machines on the local network asking if any of them knows the MAC address
corresponding to a particular IP address. The operating system kernels on
all the receiving machines compare the requested address to their own. The
one that sees its own IP address responds, providing its own MAC address.
The requesting kernel stores the information away in a table for later reuse,
so that it won’t need to bother all other computers repeatedly.

Lots of network technologies have been developed, but two account for
the bulk of networks today. Most networks that use wires or fiber optics use
some version of the Ethernet standard, whereas most networks that use radio
signals use some version of the Wi-Fi standard. (Wi-Fi is also frequently
known by the less-catchy name 802.11, which is the identifying number of
the working group that standardizes it.) Because these two use the same
high-level interface, they can be integrated into combined networks, in which
any device can communicate with any other device by MAC address, even
if one is on the Ethernet portion of the network and the other on the Wi-Fi
portion. Internet routing is not required. The switching devices that link
Ethernet and Wi-Fi in this way are known as access points.
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9.6 Network Security

Just as networking is a large field that I can only survey in this chapter,
network security is a large area. My purpose in addressing it here is twofold.
First, I want to impress upon you how important it is; if I remained silent,
you might think it was unimportant. Second, by scratching the surface, I
can give you some feel for some of the constituent topics.

Data security must extend beyond security for the systems on which the
data is persistently stored. In today’s world, the data is frequently also in
transit over networks. For example, my students’ grades are not only stored
on the college’s computer, they are also transmitted over the Internet every
time I do grading from home. Thus, to be comprehensive, data security
must include network security.

There are two key differences between persistent storage and network
communication, however:

• Large amounts of data are available for long periods of time in per-
sistent storage. Networks, on the other hand, generally carry any
particular piece of data very fleetingly. Contrast gaining access to a
merchant’s database, containing all its customers’ credit card num-
bers, with tapping into the network connection and snagging the few
numbers that pass through during the time your interception is in
operation.

• Persistent storage is directly accessible only to a very limited number
of people who have physical access and who are subject to the risks
of being physically apprehended. The Internet, on the other hand, is
accessible to an entire world worth of malefactors, many of whom may
be beyond effective reach of law enforcement.

When the Internet was less pervasive, the first of these factors was the
dominant one, and network security was not such a major concern. Today,
the second factor must be considered the dominant one. Keep in mind also
that network adversaries are not limited to eavesdropping on, or modifying,
data already passing through the network. They can also send messages that
might trigger additional data flows that would not otherwise occur. Many
computers (typically in homes) today are “owned” by network intruders.
That is, the intruder has obtained complete control and can remotely com-
mand the computer to carry out any action, as though it were his or her
own computer, including accessing any of the persistently stored data. The
only way organizations such as companies and government agencies prevent
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their computers from being similarly “owned” is by devoting large amounts
of attention to network security.

9.6.1 Security and the Protocol Layers

Security vulnerabilities and threats exist at each layer of the protocol stack.
Similarly, defensive measures are possible at each level, whether to protect
the confidentiality of transmitted data, or to ensure the authenticity and
integrity of arriving data.

Many of the most notorious network security problems have been at
the application layer. Examples include forged email and the SQL Slam-
mer worm, which propagated by overflowing the memory space a particular
application program used for incoming messages. Some of the application-
layer vulnerabilities stem from fundamental protocol design decisions (such
as that email can claim to come from anyone), whereas others come from im-
plementation flaws (such as a program not checking whether it was putting
more data into a buffer than it had room for).

These vulnerabilities can be combated directly by using better designs
and more careful programming. However, it is unrealistic to expect per-
fection in this area, any more than in other human endeavors. Therefore,
indirect methods should also be used to minimize risk. Section 9.6.2 men-
tions the role well-configured firewall and intrusion detection systems can
play. To take one example, there was essentially zero need for organizations
to allow traffic to come in from the Internet at large to the particular port
number used by the SQL Slammer worm. This application-layer vulnerabil-
ity ought to have been shielded by a firewall.

The application layer also provides plenty of opportunity to actively en-
hance security. For example, the email protocols can be retrofitted with
cryptographic techniques to ensure that messages really come from their
stated sender, have not been modified in transit, and are read only by
their intended recipient; PGP (Pretty Good Privacy) and S/MIME (Se-
cure/Multipurpose Internet Mail Extensions) do exactly that. To take an-
other example, there is no reason why web browsers and web servers need
to directly send HTTP messages over vulnerable TCP connections. Instead,
they can interpose a layer of encryption known as the Secure Sockets Layer
(SSL). Every time you visit a secure website and see the padlock icon click
shut, it means that SSL is in use. Conceptually this is between the main
HTTP application layer and the TCP transport layer, but strictly speaking
it is an application-layer protocol.

At the transport layer, TCP is subject to its own set of vulnerabilities.
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Many of the denial-of-service attacks on network servers take place at this
level; the server under attack is flooded by initial connection-establishment
requests that are never followed up on. Proposals for fixing that problem in
fundamental ways run into the difficulty of changing any protocol that is so
widely deployed.

One example of a security-enhancement technology at the transport layer
is an optional TCP feature for message authentication. This feature is par-
ticularly used by routers in order to secure their communication with neigh-
boring routers. If it were possible for an intruder to inject bogus routing
information, the Internet could be rendered unusable. Therefore, routers
“sign” their routing update messages, using the optional TCP feature, and
check the signatures on the updates they receive from neighboring routers.

One of the biggest security vulnerabilities at the network layer is that
packets may have incorrect source addresses. The typical response to this
problem is filtering at routers. For example, no packets should be allowed
out of my college campus onto the Internet at large if the source address is
not a legitimate one from the range assigned to this college. That would
prevent someone here from pretending to be elsewhere.

I already mentioned that IPsec is a security technology at the network
layer. The most common application of IPsec is when an organization has
computers at several physical locations (including, frequently, within work-
ers’ homes) and wants to allow them all to communicate securely with one
another, even though the traffic between locations is carried on the pub-
lic Internet. IPsec supports this kind of virtual private network (VPN ) by
making sure every packet of data sent is encrypted, so as to be completely
opaque to eavesdroppers, and so as to stymie any active intruder who would
attempt to modify or inject packets.

Finally, the lowest layers of the protocol stack, the link and physical
layers, are not immune from security issues. I will mention just two. One
is that the ARP protocol, used to translate internet addresses into MAC
addresses, was designed without any serious consideration of security issues.
As a result, it is easy for any computer on a local network to take over
an internet address that ought to belong to another computer on the same
network. This is an attack more readily detected and responded to than
prevented. To take a second example, Wi-Fi signals for many organizations
can be picked up from the street outside. Moreover, the encryption built into
early versions of Wi-Fi was faulty and even in newer versions is frequently
not turned on. If you use Wi-Fi, you should definitely read one of the widely
available tutorials on Wi-Fi security. These systems can be configured much
more securely than they usually are.
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9.6.2 Firewalls and Intrusion Detection Systems

A firewall is a system that imposes some restriction on the Internet traffic
crossing a border, for example, between a company and the outside world,
or between a particular computer and the rest of the Internet. Security-
conscious organizations deploy multiple firewalls, protecting not only the
outer perimeter, but also the borders between internal groups and around
individual systems. Every computer installation that is hooked up to the
Internet, even as small as a single home computer, should have at least one
firewall.

A firewall can be a computer (or special-purpose hardware unit) devoted
to the purpose, a router that has been configured to filter traffic, or software
installed directly on the computer being protected. If the firewall operates
correctly, any of these approaches is valid. However, if the firewall software
itself is buggy, the consequences are likely to be more severe if it is operating
on the same computer that is being protected. The best practice is to use a
reputable external firewall at the organizational and workgroup perimeters
and then software firewalls on individual computers. Home users should
ideally use the same approach. The external firewall in this case may be a
NAT router.

The big problem with firewalls is configuring them to let through only
traffic that has a good reason to exist while blocking all other traffic. Empiri-
cal studies have shown that a large percentage of firewalls are misconfigured.
Security-conscious organizations have their firewall configuration files exam-
ined by auditors and also have penetration testing performed, in which the
auditors make attempts to gain access to the protected network.

In an organizational setting, there is pressure on network administrators
to not configure firewalls too restrictively. If traffic necessary to the orga-
nization’s functioning is blocked, someone will complain. These complaints
could cost the administrator a job. In a home setting, on the other hand,
you are likely to be complaining to yourself and can presumably stand the
heat. Therefore, you should set all firewall settings as restrictively as pos-
sible, and wait and see what harm it does you. Loosen up on only those
settings that prove to get in your way. This approach compensates for your
inability to hire security auditors.

One of the most important steps an organization can take to preserve
overall security is to use firewalls to isolate machines that are exposed to at-
tack, so that even if those particular machines are “owned” by attackers, the
damage is limited. As an example, consider a web server that does not sup-
port interactive transactions (such as shopping), but rather just disseminates
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information about the organization. A security-conscious configuration is as
shown in Figure 9.11.

Suppose that the web server software has some bug, such that by sending
some clever, over-long message to the server’s normal port 80, an outside
attacker can overwrite some critical memory and come to “own” the server,
executing arbitrary code. Depending on the access controls in place on the
server, the attacker may be able to deface the website, replacing the orga-
nization’s web pages with others. However, the attacker cannot mount any
attack from the server to other machines, whether on the internal network
or the external, because the firewall prohibits any outbound connections
from the server. When employees of the organization want to reconfigure
the server or put new information on it, they do so using connections they
initiate from within the internal network.

In addition to firewalls, all organizational networks should also include an
intrusion detection system (IDS ). This system monitors all network traffic
looking for activity that does not fit the usual, legitimate patterns. The IDS
can play two roles, both alerting the network administrators to the existence
of a problem and capturing forensic evidence useful in crafting an appropri-
ate response. The response can be both technical (such as removing an
infected machine from the network) and non-technical (such as cooperating
with law-enforcement officials). A properly configured IDS should protect
not only against intrusions that breach the organizational perimeter, but
also against attacks mounted by insiders.

9.6.3 Cryptography

Cryptography consists of mathematical techniques for transforming data in
order to assure confidentiality or integrity and authenticity. Cryptography
underlies much of network security, ranging from application-layer secure
email and web browsing to link-layer encryption within the Wi-Fi protocol.
Cryptography provides the means for legitimate communication to continue
even as adversaries are thwarted. However, you should be aware that most
practical security problems are outside the scope of cryptography. Rarely is
there a report of encryption being broken, whereas misconfigured firewalls
and systems vulnerable to buffer overflows are everyday occurrences.

Cryptographic techniques can be categorized in two independent ways:

• Some techniques rely on both the sender and the receiver knowing a
shared secret, that is, a secret key that the two of them both know but
intruders don’t. Other techniques use a key pair, with one component
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Internal
network

External
network

Web server

Organization
boundary

Firewall
router

Configuration of the firewall router:
Initiator Target Allowed ports

external network web server 80

internal network web server a few needed for operation

internal network external network none

external network internal network none

web server any none

Figure 9.11: This firewall configuration allows an organization’s web server
to provide static content to the outside world but allows for no other inter-
action. An organization with other needs would have other equally security-
conscious modules added to this one.
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known to the sender and the other to the receiver. These two options
are known as symmetric-key cryptography and asymmetric-key cryp-
tography. Because in many applications one half of a key pair can be
made publicly known while the other is kept secret, asymmetric-key
cryptography is also known as public-key cryptography.

• Some techniques encrypt the message, that is, transform the message
so that it is not readable without the appropriate key, whereas other
techniques leave the message itself alone but append a Message Au-
thentication Code that allows the possessor of the appropriate key to
verify that the message really comes from the legitimate sender and
was not modified. Note that the abbreviation MAC is used in this
context independently from its use in describing features of link-layer
protocols, such as MAC addresses.

The more bits long a cryptographic key is, the more work the legitimate
sender and receiver need to do, but also the more work any intruder needs to
do. The goal in designing a cryptographic system is to make the legitimate
parties’ work scale up only modestly with key size, whereas the intruder’s
work scales up much more rapidly. That way, a key size can be chosen that is
infeasible for an intruder to break, yet still practical for use. Unfortunately,
none of the computational hardness results used in practical cryptosystems
have been proved. Thus, the possibility remains that a sufficiently clever
intruder could find a way to break the system that does not scale up so
rapidly with key size.

Symmetric-key systems of reasonable security are more computationally
efficient for the legitimate parties than asymmetric-key systems are. How-
ever, giving each potential pair of communicating parties a shared secret in
advance is impractical. Thus, many practical systems (such as PGP and
SSL) combine the two types of cryptography, using asymmetric-key cryp-
tography to establish a secret key and then switching to symmetric-key
cryptography for the bulk of the communication.

The present standard technique for symmetric-key encryption is AES
(Advanced Encryption Standard), also known as Rijndael. Many applica-
tions still use the prior standard, the Data Encryption Standard (DES ).
However, DES is now considered not very secure, simply because the key
size is too small. A more secure variant, 3DES, uses the basic DES operation
three times. Best practice for new applications is to use AES.

The most well-known technique for asymmetric-key encryption is the
RSA system, named for the initials of its three developers, Rivest, Shamir,
and Adleman. Data transformed with one half of the RSA key pair can be
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transformed back to the original using the other half of the key pair; the
two specify inverse functions. Thus, a user who wants to receive encrypted
messages can make one half the key pair public for any sender to use, while
keeping the other half private so that no one else can read the messages.

The standard technique for computing a MAC using a shared secret is
known as a Hashed Message Authentication Code (HMAC ). The shared se-
cret and the message are combined together and fed into a cryptographic
hash function, also known as a message digest function. This function is
designed so that adversaries cannot realistically hope to find another input
that produces the same output. Thus, if the recipient’s copy of the mes-
sage and shared secret result in the same HMAC code, the recipient can be
confident that the message is legitimate, because it came from someone else
who knew the same two ingredients. As an additional safeguard against cer-
tain possible flaws in the cryptographic hash function, the standard HMAC
technique (used in IPsec, for example) applies the hash function twice, as
shown in Figure 9.12.

HMAC codes are commonly based on one of two cryptographic hash
functions, MD5 (Message Digest 5 ) and SHA-1 (Secure Hash Algorithm
1 ). Unfortunately, neither of these widely deployed functions turns out to
be as secure as previously thought. Unlike DES, which simply used an
insufficiently long key, MD5 and SHA-1 have fallen prey to fundamental
mathematical progress. The computational problem faced by adversaries
does not scale up as rapidly with hash size as had been conjectured, es-
pecially for MD5. No one has yet found a way to exploit these functions’
vulnerabilities within the context of HMAC. However, the fact that the un-
derlying cryptographic hash functions are weaker than previously thought
is worrisome enough that new systems should definitely at a minimum use
SHA-1 rather than MD5, as MD5’s vulnerabilities are more pronounced.
System developers should monitor further news from the cryptography re-
search community and should consider using successors to SHA-1, such as
SHA-512. Existing systems using MD5 (particularly in non-HMAC con-
texts) should be reconsidered, and many of them should be converted to
SHA-1 or successor functions with deliberate speed. Practical exploits have
been found for MD5’s vulnerabilities in some non-HMAC contexts; the same
is not currently true for SHA-1.

The most common technique for creating an asymmetric-key MAC com-
bines a cryptographic hash function with the RSA system. These MACs
are also known as digital signatures, because they share some important
features with real signatures, as I will discuss in the next paragraph. First,
though, let me explain how they are computed. Recall that each RSA key
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Combine
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Combine
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Message Key

Figure 9.12: An HMAC can be computed as shown here. Both the sender
and the receiver use this computation, each with its own copy of the shared
secret key. The sender uses the message it is sending and transmits the
resulting HMAC along with the message. The receiver does the computa-
tion using the (hopefully unchanged) message it received. If all is well, the
receiver computes the same HMAC as it received along with the message.
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pair specifies a pair of inverse functions. A sender can keep one half the key
pair secret, for use in signing messages, and make the other public, for use
in checking messages. Call the two inverse functions S and C, for signing
and checking, and the cryptographic hash function H. Then a sender can
use S(H(m)) as a signature for the message m. Any recipient who wants to
check this signature runs it through the function C, producing C(S(H(m))),
which is the same as H(m), because C is the inverse function of S. The re-
cipient also runs the received message through H, and verifies that the same
value of H(m) results. This provides evidence that the message wasn’t tam-
pered with, and was signed by the one person who knew S. This system is
summarized in Figure 9.13.

The key difference between a digital signature and an HMAC is that the
recipient is in no better position to forge a digital signature than anyone
else would be. Thus, digital signatures offer the feature known as non-
repudiation. That is, if you have an embarrassing email signed by me, you
could show it to a third party and I couldn’t convincingly claim that you
forged it yourself. An HMAC, on the other hand, would offer no evidence
to a third party regarding which of the two of us wrote the message.

Exercises

9.1 Under the end-to-end principle, which protocol layers are processed by
devices within the Internet, excluding the endpoint computers?

9.2 List at least five types of header lines that can be used in the HTTP
protocol. What is the function of each?

9.3 What is one reason a domain name might take much longer to resolve
the first time it is used than on subsequent uses?

9.4 Figure 9.9 on page 423 illustrates how parity can be used as a primitive
form of erasure coding for forward error correction. Show how the third
segment could be reconstructed if it were missing. Also, suppose the
parity segment were 01100001. What would the missing third data
segment then have been?

9.5 TCP and UDP headers contain port numbers used by the transport-
layer software to demultiplex incoming data to the appropriate application-
layer consumer. What analogous number is in the IP header, allowing
the network layer to demultiplex to the appropriate transport-layer
consumer?
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m, the message
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Figure 9.13: A digital signature is computed and verified as shown here.
The signing and checking functions S and C are inverses, one kept private
and the other publicly known. The role of the cryptographic hash function,
H, is simply to efficiently reduce the amount of data that S and C need to
process.

9.6 Express the IP address 10100011000101000110000100001111 in dotted
decimal.

9.7 Express the IP address 194.79.127.10 in binary.

9.8 If a network mask is 255.255.192.0, how many bits long is the network
prefix?

9.9 If a network mask is 255.255.224.0, how many bits long is the network
prefix?

9.10 What would the network mask be for a 20-bit network prefix?

9.11 What would the network mask be for a 22-bit network prefix?

9.12 My computer has IP address 138.236.64.64 and mask 255.255.248.0.
For which of the following destination IP addresses does my computer
send the packet directly, and for which does it send by way of the
gateway router?

(a) 138.236.71.64

(b) 138.236.72.64

(c) 138.236.64.72

(d) 216.114.254.180

9.13 Identify by name and number which layer of the OSI reference model
corresponds to each of the following specific protocols, technologies, or
functions:
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(a) UDP

(b) retrieving email

(c) Ethernet MAC addresses

(d) IP

(e) congestion control

(f) fiber optics

(g) TCP

(h) routers

(i) delivering bytes in their proper sequence

(j) DNS

(k) end-to-end flow-control

(l) HTTP

(m) retransmitting data for which no acknowledgment is received

(n) CIFS

(o) verifying that a cached web page is up to date

(p) port numbers

(q) NFS

9.14 Section 9.3.2 explains how TCP recovers from lost data segments, but
it doesn’t consider lost acknowledgments. Nonetheless, the descrip-
tion in that section is sufficient that you could figure out how lost
acknowledgments are tolerated.

(a) Explain why sometimes a lost acknowledgment is tolerated with-
out any additional communication or delay.

(b) Explain why under other circumstances, TCP incurs extra delay
and communication in recovering from a lost acknowledgment.

Programming Projects

9.1 Modify the message storage server from Figure 9.7 on page 415 so
that each accepted connection is handled in a separate thread, with
the main thread immediately looping back around to accept another
connection. Using telnet, show that a client that is slow providing
its line of text does not prevent other clients from being served. Your
program should use a synchronized method that atomically stores a
newly arrived message and retrieves the previously stored message.
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9.2 Write a program that can retrieve a single file from a web server using
HTTP, given the hostname of the server and the name of the file on the
server. (For example, given www.gustavus.edu and /+max/, it would
retrieve my home page.) You should directly use a socket API, rather
than any higher-level mechanism that already implements HTTP for
you. Your handling of errors and other exceptional circumstances can
be very primitive, at least initially.

9.3 The Java class java.net.ServerSocket provides two methods called
getLocalAddress() and getInetAddress() that can be used to find
the local and remote internet addresses associated with a connected
socket. Write a server program that accepts connection requests and,
each time it receives a connection, writes out on the connection a line
of text containing the string form of the remote address from which
the connection was received. Write a client program that connects to
the server, displays the string the server sends, and also displays the
client’s own local address. Show how you can use this pair of programs
to test whether the client is connected to the server through a NAT
router or not.

Exploration Projects

9.1 Most UNIX and Linux systems have a program named dig that can be
used to send DNS queries and show the responses in human-readable
form. Use this tool to explore the DNS. For example, find the in-
ternet addresses of some of your favorite computers, check whether
the CNAME chain leading from www.gustavus.edu. still has the same
structure as I reported, and use the zone transfer function to display
the contents of your local zone. What aspects of the DNS do you find
that were not mentioned in my description?

9.2 Use the freely available network packet capture and analysis tool named
wireshark to study DNS. Capture packets while you are accessing a
website you have not previously accessed. Look at just the DNS pack-
ets and for each one expand out the DNS portion of the display. In
what regards do you see confirmation of my description of DNS? What
aspects of the DNS do you find that were not mentioned in my de-
scription?

9.3 Use the freely available network packet capture and analysis tool named
wireshark to study either CIFS or NFS. Capture packets while you
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are accessing a file provided by a server. Look at just the CIFS or NFS
packets and for each one expand out the CIFS or NFS portion of the
display. In what regards do you see confirmation of my description of
this system? What aspects of the system do you find that were not
mentioned in my description?

9.4 I mentioned that NFS does not have operations for opening or closing
files. With regard to closing, this is inarguably true, whereas with
regard to opening, my claim might be only a half-truth. The NFS
protocol includes a lookup operation, which is similar to a file open.
Find information about the NFS lookup operation and explain how
looking up a file is similar to and different from opening a file.

9.5 Compile and run the message storage server from Figure 9.7 on page 415.
Using telnet, show that a client that is slow providing its line of text
prevents other clients from being served.

9.6 Find your own IP address and network mask. On a Microsoft Windows
system, you can do this with the ipconfig command. On most UNIX
or Linux systems, you can do this using the ifconfig command; a
typical example of its use would be ifconfig eth0.

From the network mask, how many bits long is your network prefix?
Using this information together with the IP address, what is your
actual network prefix?

9.7 Explore some of the resources and sample policies on www.sans.org.
Write a summary of something interesting you find.

9.8 In 2004, Pang et al. published a description of the “Characteristics
of Internet Background Radiation.” In 2010, Wustrow et al. updated
this with “Internet Background Radiation Revisited,” and in 2014,
Durumeric et al. provided another update with “An Internet-Wide
View of Internet-Wide Scanning.” Read one or more of these, all of
which are available on the web. Write a summary no longer than one
page.

9.9 In comparing CIFS and NFS, I remark that “a stateless design [such
as NFS] cannot readily support file locking or keeping client-side file
caches up to date.” Find out what is hiding behind the word “readily.”
Does NFS provide any support for these services? If so, how?
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9.10 The section on DNS (Section 9.2.2) mentions that type A resource
records are used for internet addresses. The section on IP versions
(Section 9.4.1) indicates that IPv6 addresses are different from IPv4
addresses. Which version was assumed in the section on DNS? Are the
addresses for the other version also held in type A resource records?
If not, what type is used?

9.11 In late 2008, a major security vulnerability became known that in-
volved the use of MD5 digital signatures by VeriSign’s RapidSSL
brand. Research this topic and write a paper that explains the vulner-
ability and its resolution, making appropriate connections to material
within this chapter. Be sure to seek out sources of information that
are authoritative and that include technical details.

Notes

Most of the topics in this chapter are covered in more detail in standard
networking textbooks, such as the one by Tanenbaum [147] and the one by
Kurose and Ross [94]. The ultimate source of information on the various
protocols are the corresponding standards documents, which can be found
at such sites as www.rfc-editor.org. A good compromise, providing almost as
much technical detail as the standards and almost as much tutorial clarity
as the textbooks, is Stevens’s book [141]. If you want to delve into the ker-
nel implementation details, you could look at books on the FreeBSD [105]
or Linux [75] implementations. Regarding the frequency of firewall miscon-
figuration, see the study by Wool [157]. One area of research I mentioned
is the use of erasure coding for forward error correction; see, for example,
the paper by Byers, Luby, and Mizenmacher [27]. An exploration project is
based on papers by Pang et al. [113], Wustrow et al. [159], and Durumeric
et al. [55].
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Chapter 10

Messaging, RPC, and Web
Services

10.1 Introduction

Application programmers who create distributed systems of communicating
processes fundamentally rely upon the support for networking provided by
operating systems; this support was described in Chapter 9. Sometimes
this reliance is direct; for example, the application programs may use sock-
ets to open connections between TCP ports and then send byte streams
that encode application messages. Increasingly, however, this reliance is in-
direct because a middleware layer comes between the application program
and the socket API. The application programmer works in terms of the
middleware-supported abstractions, such as message queues and remotely
accessible objects. The middleware provides those abstractions by making
use of the more fundamental operating system–supported facilities.

In this chapter, I will present two distinct styles of communication mid-
dleware. Messaging systems, discussed in Section 10.2, support the one-way
transmission of messages. Application programmers can choose to use those
messages in request-response pairs, but the middleware remains oblivious
to this pairing and treats each message individually. Sending a request and
receiving a response happen in separate transactions, potentially at quite
different times. For more tightly coupled interactions, Remote Procedure
Call (RPC) systems provide an alternative style of communication, as pre-
sented in Section 10.3. Each time a process invokes an RPC operation, it
sends a request and then immediately waits for a response as part of the
same transaction. The RPC system makes the request-response pair appear

447
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to the application program as a normal procedure call and return.
After presenting each of these styles of communication, I turn in Sec-

tion 10.4 to their connection with web services. Web services use standard-
ized communication mechanisms to make programmed functionality avail-
able over the Internet. Many web services fit the RPC model, though they
can also use one-way messaging or (in theory) more general message ex-
change patterns.

Finally, the chapter concludes, as usual, with a look at security issues in
Section 10.5 and then exercises, projects, and notes.

10.2 Messaging Systems

Applications based on one-way transmission of messages use a form of mid-
dleware known as messaging systems or message-oriented middleware (MOM ).
One popular example of a messaging system is IBM’s WebSphere MQ, for-
merly known as MQSeries. One popular vendor-neutral API for messaging
is the Java Message Service (JMS), which is part of Java EE.

Messaging systems support two different forms of messaging: message
queuing and publish/subscribe messaging. I already introduced message
queuing in Section 5.2.2. Here I will build on that introduction to message
queuing and also provide an introduction to publish/subscribe messaging.

Figure 10.1 illustrates the difference between the two forms of messag-
ing. Message queuing strongly decouples the timing of the client and the
server, because the queue will retain the messages until they are retrieved.
(Optionally, the client can specify an expiration time for unretrieved mes-
sages.) The server need not be running at the time a message is sent. On
the other hand, the client is only weakly decoupled from the server’s iden-
tity. Although the client doesn’t send the message to a specific server, it
does send it to a specific queue, which still creates a point-to-point architec-
tural structure, because each queue normally functions as the in-box for a
particular server. A point-to-point structure means that if the message is of
interest to multiple servers, the client needs to send it to multiple queues.
The publish/subscribe architecture, in contrast, strongly decouples publish-
ers from any knowledge of the subscribers’ identities. Each message is sent
to a general topic and from there is distributed to any number of subscribers
that have indicated their interest in the topic. However, publish/subscribe
messaging usually does not strongly decouple timing. Messages are usually
only sent to current subscribers, not retained for future subscribers.

The portion of a messaging system managing topic objects for pub-
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Client Server
(1) (3)

Queue

(2)

Message Queuing Publish/Subscribe Messaging

Publisher Subscriber

Subscriber

Subscriber

Topic
(2)

(3)

(3)

(1)

(1)

(1)
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Figure 10.1: Message queuing involves three steps: (1) the client sends a
message to a queue, (2) the queue retains the message as long as necessary,
(3) the server retrieves the message. Publish/subscribe messaging involves
a different sequence of three steps: (1) each subscriber subscribes with one
of the messaging system’s “topic” objects, (2) the publisher sends a message
to the topic, (3) the message is distributed to all current subscribers.

lish/subscribe messaging is known as a broker. The broker is responsible
for maintaining a list of current subscribers for each topic and for distribut-
ing each incoming publication to the current subscribers of the publication’s
topic.

Section 5.2.2 explained the relationship between message queuing and
transactions. A transaction can retrieve messages from queues, do some pro-
cessing, such as updating a database, and send messages to queues. When
the transaction commits, the input messages are gone from their queues,
the database is updated, and the output messages are in their queues. If
the transaction aborts, then the input messages remain in their queues, the
database remains unchanged, and the output messages have not entered
their queues.

This transactional nature of message queuing has an important conse-
quence for systems in which request messages are paired with response mes-
sages and will help me explain the difference between messaging and RPC
systems. Consider a client and server coupled through request and response
queues, as shown in Figure 10.2. The client can generate a request mes-
sage in one transaction and then in a second transaction wait for a response
message. However, it cannot do both in a single transaction, or it will wait
forever, having deadlocked itself. Until the transaction commits, the request
message doesn’t enter the request queue. As a result, the server has nothing
to respond to and won’t generate a response message. Therefore, the client
will continue waiting for the response message and so the transaction won’t
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Client Server

Request queue

Response queue

Figure 10.2: A client and server can engage in a request-response protocol
using two message queues. Typically, the client tags each request message
with a unique identifying string, known as a correlation ID. The server copies
this ID into the resulting response message so that the client knows to which
request the response corresponds.

commit, completing the deadlock. If your goal is to have the client make
use of the server as one indivisible step within a transaction, then you need
to use RPC rather than messaging.

Publish/subscribe messaging can participate in transactions as well, but
the results are less interesting. Publishing is just like sending to a queue, in
that the message isn’t actually sent until the transaction commits. However,
receipt of messages by subscribers is handled differently. If a subscriber
receives a message within a transaction and then aborts the transaction,
it cannot count on the message being redelivered when the transaction is
retried.

In either messaging model, a consumer may want to receive only selected
messages that are of interest to it. For example, it may want to receive
stock ticker messages with updated prices, but only for IBM stock and only
if the price is less than 75 or more than 150. The program could receive all
stock ticker messages (by reading from a queue to which they are sent or by
subscribing to a topic to which they are published) and ignore those that
are uninteresting. However, for the sake of efficiency, messaging systems
generally provide mechanisms to do the filtering prior to message delivery.

In the publish/subscribe model, the selection of just IBM stock might
be accomplished simply by having a sufficiently specific topic. Messag-
ing systems generally allow topics to be hierarchically structured, much
like files in directory trees or Internet domains within the DNS. Thus, a
topic for IBM stock prices might be finance/stockTicker/IBM. A sub-
scriber interested only in this one stock could subscribe to that specific
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topic, whereas a subscriber interested in all stock prices could subscribe to
finance/stockTicker/+, where the wildcard + indicates any one subtopic.
Another wildcard, #, is fancier than needed in this case but can be useful
in other circumstances. A subscription to finance/stockTicker/# would
receive not only messages about each individual stock, such as IBM, but
also general messages, directed to finance/stockTicker itself, and more
specialized messages, directed to descendant subtopics any number of levels
below finance/stockTicker/IBM and its siblings.

This hierarchy of topics is limited, however. It fits the publish/subscribe
model but not the message queuing model, and it addresses only qualitative
selection criteria that naturally lead to distinct topics. In the example I gave
earlier, it is unlikely that a system architect would create three subtopics of
IBM for under75, between75and150, and over150. Among other reasons,
there may be other subscribers interested in other price ranges.

Therefore, messaging systems allow message consumers to specify more
general selection criteria. In the JMS API, for example, if s is a messaging
Session and d is a messaging Destination, that is, either a Queue or a
Topic, then executing

s.createConsumer(d, "Symbol = ’IBM’ AND " +

"(Price < 75 OR Price > 150)")

will produce a Consumer object with the specified selector. Any receive

operation performed on that Consumer (or any MessageListener registered
with that Consumer) will see only those messages satisfying the selection
criterion.

10.3 Remote Procedure Call

The goal of Remote Procedure Call (RPC ) middleware is to make request-
response communication as straightforward for application programmers to
program as ordinary procedure calls. The client application code calls a
procedure in the ordinary way, that is, passing in some arguments and ob-
taining a return value for its further use. The procedure it calls just happens
to reside in a separate server. Behind the scenes, the middleware encodes the
procedure arguments into a request message and extracts the return value
from the response message. Similarly, the server application code can take
the form of an ordinary procedure. By the time it is invoked, the procedure
arguments have already been extracted from the request message, freeing it
from that responsibility. Section 10.3.1 explains further the principles upon
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which RPC operates. Section 10.3.2 provides a concrete example of using
RPC in the particular form of Java RMI (Remote Method Invocation).

10.3.1 Principles of Operation for RPC

To understand how RPC middleware functions, it is helpful to think about
the fact that different procedures can present the same interface. For ex-
ample, consider procedures for squaring a number. You could have several
different procedures that take a numeric argument, compute the square,
and return it. One might work by multiplying the number by itself. An-
other might use a fancy calculation involving logarithms. And a third might
open up a network instant-messaging connection to a bored teenager, ask
the teenager what the square of the number is, then return the value it
receives, correctly extracted from the textual instant-messaging response.
This third procedure is known as a proxy for the teenager. The proxy’s
method of squaring the number involves neither multiplication nor loga-
rithms, but rather delegation of responsibility. However, the proxy still is
presenting the same interface as either of the other two procedures.

Figure 10.3 shows how RPC middleware uses a proxy to put the client
in the position of making a normal procedure call. The client application
code actually does make a normal procedure call; that much is no illusion.
However, it only gives the illusion of calling the server procedure that does
the real computation. Instead, the called procedure is a proxy standing in
for the server procedure; the proxy is often known as a stub. The stub proxy
discharges its responsibility not by doing any actual computation itself, but
by using request and response messages to communicate with the server.

The stub proxy suffices to hide communication issues from the appli-

Client
application

code

Stub
proxy Server

(1) procedure
      call

(2) request
     message

(3) response
      message

(4) procedure
return

Client

Figure 10.3: In Remote Procedure Call, application code makes a normal
procedure call to a stub proxy, which doesn’t carry out the requested com-
putation itself, but rather sends a request message to the server and then
turns the response message into the procedure return value.
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cation programmer writing the client code. In some cases, that is all that
is needed, and the server is written by a networking expert who can di-
rectly write code to handle request and response messages. More typically,
however, the server code is written by another application programmer who
appreciates middleware support. As shown in Figure 10.4, the server ap-
plication code can be a normal procedure, called the same way it would be
if it were running on the same machine with the client. Once again, the
illusion is only partial. The server application code really is being called
with an ordinary procedure call. The only illusion concerns what code is
doing the calling. From an application standpoint, the caller seems to be
the client. However, the caller really is a dedicated portion of the RPC
runtime system, known as a skeleton or a tie, the purpose of which is to call
the procedure in response to the request message. See Figure 10.5 for the
application programmer’s view of the result; the middleware communication
disappears from view and the client application code seems to be directly
calling the server application procedure, as though they were part of a single
system.

Early versions of the RPC communication model were based on ordi-
nary procedure calls, whereas more recent versions are based on the object-
oriented concept of method invocation. The basic principles are the same,
however, and the name RPC is commonly understood to include method
invocation as well as procedure calling.

A key example of a non-object-oriented RPC standard is Open Network
Computing (ONC) RPC, which was developed at Sun Microsystems and
became an Internet standard. ONC RPC serves as the foundation for NFS,
the Network File System discussed in Section 9.2.3. Each NFS operation,
such as reading from a file, is carried out by calling an RPC stub proce-
dure, which takes responsibility for packaging the procedure arguments into

Client
application

code

Stub
proxy

(1) procedure
      call

(6) procedure
return

Client

Skeleton/
tie

Server
application

code

(3) procedure
      call

(4) procedure
      return

Server

(2) request
      message

(5) response
    message

Figure 10.4: In order for the server application code to be free from commu-
nication details, it can be a normal procedure invoked by a portion of the
RPC runtime sometimes called a skeleton or a tie.
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Client
application

code
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application

code

(1) procedure
      call

(2) procedure
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Distributed system

Figure 10.5: The application programmer’s view of an RPC system has the
client code apparently making a direct call to the server procedure; the RPC
proxy mechanism is invisible.

a request message and for extracting the return value from the response
message.

In object-oriented versions of RPC, the stub proxy is an object present-
ing the same interface as the server object. That is, the same repertoire of
methods can be invoked on it. The stub uses a uniform strategy for han-
dling all methods: it translates method invocations into appropriate request
messages.

Two significant object-oriented RPC standards are CORBA and RMI.
CORBA (Common Object Request Broker Architecture) is a complicated
language-neutral standard that allows code written in one language to call
code written in another language and located elsewhere in a distributed sys-
tem. RMI (Remote Method Invocation) is a considerably simpler mechanism
included as part of the Java standard API; part of its simplicity comes from
needing to support only a single programming language. Because RMI can
optionally use CORBA’s communication protocol, the Internet Inter-ORB
Protocol (IIOP), the two systems can interoperate.

One important feature of object-oriented RPC systems such as RMI is
that the values communicated as method arguments and return values can
include references to other objects. That is, a remotely invoked method can
operate not only on basic values, such as integers or strings, but also on
user-defined types of objects. One remotely accessible object can be passed
a reference that refers to another remotely accessible object. In fact, this
is the way most objects find out about other objects to communicate with
after getting past an initial startup phase.

To initially get communication started, client objects typically look up
server objects using a registry, which is a specialized server that maintains a
correspondence between textual names and references to the remotely acces-
sible objects. (These correspondences are known as bindings.) The registry
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itself can be located, because it listens for connections on a prearranged
port. When an application server object is created that a client might want
to locate, the server object is bound to a name in the registry. The client
then presents the same textual name to the registry in a lookup operation
and thereby receives a reference to the initial server object it should contact.

After this initial contact is made, the objects can use the arguments
and return values of remote method invocations to start passing each other
references to additional objects that are not listed in the registry. Pretty
soon any number of client and server objects can have references to one
another and be invoking methods on each other.

Section 10.3.2 is occupied by an RMI programming example designed
to reinforce the aforementioned point, that remote objects are located not
only using the registry, but also by being passed as references. This exam-
ple illustrates the way in which an application programmer uses RMI and
thereby complements the preceding general discussion of how RPC stubs
and skeletons work. I do not provide any more detailed information on the
inner workings of RMI.

10.3.2 An Example Using Java RMI

Using RMI, it is possible to develop an implementation of the publish/subscribe
messaging model, in which publishers send messages to topic objects, which
forward the messages along to subscribers. The code in this section shows
such an implementation in the simplest possible form. In particular, this
code has the following limitations; to address each limitation, there is at
least one corresponding Programming Project:

• The message delivery is fully synchronous. That is, the publisher asks
the topic object to deliver a message; control does not return to the
publisher until the message has been delivered to all the subscribers.
Programming Projects 10.2 and 10.3 address this.

• The example programs support only a single topic. Programming
Projects 10.4 and 10.5 address this.

• In the example code, there is no way for a subscriber to explicitly
unsubscribe from a topic. However, the code does support subscribers
that terminate, lose communication, or otherwise fail. Programming
Project 10.6 provides explicit unsubscription.

• The example code includes simple command-line interfaces for sending
textual strings as messages and for displaying received messages on
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the terminal. These suffice to demonstrate the communication but do
not have the appeal of a chat-room application or multi-player game.
Programming Project 10.7 provides the opportunity to address this
shortcoming.

When using RMI, each object that is remotely accessible must implement
a Java interface that extends java.rmi.Remote. Each method in that inter-
face must be declared as potentially throwing java.rmi.RemoteException.
This potential for an exception is necessary because even if the underlying
operation cannot possibly fail, the remote invocation of that operation can
fail in myriad ways, such as through a network disconnection or a crash of
the machine on which the remote object is located. Figure 10.6 shows the
source code for a simple remote interface implemented by subscribers and
also by topic objects. The reason why these two categories of participants
in the publish/subscribe model implement this same interface is that they
have something in common: they both receive messages.

Subscribers directly implement the MessageRecipient interface, as you
will see later. However, topic objects need to implement an extension of
the interface, because they can do more than receive messages; they can
also add subscribers. Figure 10.7 shows the Topic interface, which extends
MessageRecipient through the addition of a addSubscriber method. No-
tice that the argument passed to addSubscriber is itself a MessageRecipient.
This allows a reference to one remotely accessible object (the subscriber) to
be passed to another (the topic) for its later use.

Having seen these two interfaces for remotely accessible objects, you are
now ready to see an example of code that makes use of such an object.
Figure 10.8 contains a simple program for sending a textual message (given
as the first command-line argument) to a remote object implementing the

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface MessageRecipient extends Remote {

void receive(String message) throws RemoteException;

}

Figure 10.6: The MessageRecipient interface describes the common feature
shared by subscribers and the central topic objects that redistribute pub-
lished messages to subscribers: any of these objects can receive a message.
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import java.rmi.RemoteException;

public interface Topic extends MessageRecipient {

void addSubscriber(MessageRecipient subscriber)

throws RemoteException;

}

Figure 10.7: The Topic interface provides an operation for subscribers
to use to register their interest in receiving messages. By extending the
MessageRecipient interface, the Topic interface is also prepared to receive
messages from publishers.

Topic interface. The specific remote object is looked up with the aid of a
registry, that is, a service within RMI that records name/object bindings.
The registry is located on a server computer whose hostname is specified as
the second command-line argument or on the local computer if no hostname
is given.

Let’s turn next to an example of how a remotely accessible object can
be created and listed in the registry. The Topic Server class, as shown in
Figures 10.9 and 10.10, implements the Topic interface. Each TopicServer

keeps track of its current subscribers; additions happen in the addSubscriber
method, and deletions happen when a message cannot be successfully de-
livered. Because the RMI infrastructure is allowed to invoke each operation
in its own thread, the remote operations are marked as synchronized so as
to provide mutual exclusion. This prevents any races in the manipulations
of the list of subscribers. When the TopicServer program is run from the
command line, the main method creates an instance of the class, exports it
for remote access, and places it in the local registry, using the same topic.1
name as the Publisher class looks up.

The final component of the example publish/subscribe system is the
Subscriber class, as shown in Figure 10.11. This class provides a simple
test program which displays all the messages it receives. Like the Publisher
class, it uses the registry on a specified host or on the local host if none is
specified. Also like the Publisher class, it looks up the name topic.1 in
that registry, thereby obtaining a reference to some remote object imple-
menting the Topic interface. The reference will actually be to a proxy that
implements the interface. However, the proxy will be communicating with an
instance of the TopicServer class. Unlike the Publisher, the Subscriber

is itself a remotely accessible object. It is created and exported just like the
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import java.rmi.registry.LocateRegistry;

import java.rmi.registry.Registry;

public class Publisher {

public static void main(String[] args) {

if(args.length < 1 || args.length > 2){

System.err.println("Usage: java Publisher message [host]");

System.exit(1);

}

String message = args[0];

String hostname = args.length > 1 ? args[1] : null;

try {

Registry registry = LocateRegistry.getRegistry(hostname);

Topic topic = (Topic) registry.lookup("topic.1");

topic.receive(message);

} catch (Exception e) {

System.err.println("caught an exception: " + e);

e.printStackTrace();

}

}

}

Figure 10.8: This program uses the registry to locate the remote object that
is named topic.1 and that implements the Topic interface. The program
then asks that object to receive a message.
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import java.rmi.registry.Registry;

import java.rmi.registry.LocateRegistry;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import java.util.List;

import java.util.ArrayList;

public class TopicServer implements Topic {

private List<MessageRecipient> subscribers;

public TopicServer(){

subscribers = new ArrayList<MessageRecipient>();

}

public synchronized void receive(String message)

throws RemoteException

{

List<MessageRecipient> successes =

new ArrayList<MessageRecipient>();

for(MessageRecipient subscriber : subscribers) {

try {

subscriber.receive(message);

successes.add(subscriber);

} catch(Exception e) {

// silently drop any subscriber that fails

}

}

subscribers = successes;

}

Figure 10.9: The TopicServer class continues in the Figure 10.10. The
receive method shown here is remotely invoked by publishers and itself
remotely invokes the receive method of subscribers.
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public synchronized void addSubscriber(MessageRecipient subscriber)

throws RemoteException

{

subscribers.add(subscriber);

}

public static void main(String args[]) {

try {

TopicServer obj = new TopicServer();

Topic stub =

(Topic) UnicastRemoteObject.exportObject(obj, 0);

Registry registry = LocateRegistry.getRegistry();

registry.rebind("topic.1", stub);

System.err.println("Server ready");

} catch (Exception e) {

System.err.println("Server exception: " + e.toString());

e.printStackTrace();

}

}

}

Figure 10.10: This continuation of the TopicServer class, begun in Fig-
ure 10.9, shows how remote objects are created, exported (that is, made
remotely accessible), and bound to a name in the registry.
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TopicServer is. However, it is not bound in the registry; the TopicServer

does not locate its subscribers by name.
Before you can successfully run the TopicServer and test it using the

Publisher and Subscriber programs, you will probably need to run the
rmiregistry program that comes as part of the Java system. The details
of how you run this program are system-specific, as is the mechanism for
ensuring that all components of the overall RMI system have access to your
classes. Therefore, you are likely to need to consult the documentation for
your specific Java system in order to successfully test the sample code or
complete the programming projects. Once you get over these technical hur-
dles, however, you will be able to communicate among multiple machines, so
long as they are all running Java and so long as no network firewalls impede
communication among them. Web services provide an alternate RPC mech-
anism that can allow communication between an even wider assortment of
machines.

10.4 Web Services

A web service is a communicating component that complies with a collec-
tion of Internet standards designed to share as much as possible with the
standards used for ordinary web browsing. This allows web services to take
advantage of the web’s popularity, hopefully making communication between
programmed components as ubiquitous as the communication with humans
facilitated by the web.

The first edition of this textbook provided information about web ser-
vices standards, including an example of their use. However, this informa-
tion became so badly outdated that I have removed it from this open-source
version of the book. This section remains as a place-holder until such time
as someone contributes an up-to-date treatment of the topic.

10.5 Security and Communication Middleware

Messaging systems and RPC servers often use ACLs to control access,
much like file systems do. For example, a broker with a hierarchy of pub-
lish/subscribe topics can associate an ACL with each topic in the hierarchy;
the ACL specifies the users or groups that may publish and those that may
subscribe. ACLs on subtopics take precedence over those on more general
topics. Thus, protection can be specified as precisely as necessary for those
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import java.rmi.registry.LocateRegistry;

import java.rmi.registry.Registry;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

public class Subscriber implements MessageRecipient {

public synchronized void receive(String message)

throws RemoteException

{

System.out.println(message);

}

public static void main(String[] args) {

if(args.length > 1){

System.err.println("Usage: java Subscriber [hostname]");

System.exit(1);

}

String hostname = args.length > 0 ? args[0] : null;

try {

Registry registry = LocateRegistry.getRegistry(hostname);

Topic topic = (Topic) registry.lookup("topic.1");

Subscriber obj = new Subscriber();

MessageRecipient stub = (MessageRecipient)

UnicastRemoteObject.exportObject(obj, 0);

topic.addSubscriber(stub);

} catch (Exception e) {

System.err.println("caught an exception: " + e);

e.printStackTrace();

}

}

}

Figure 10.11: Instances of the Subscriber class are created and exported
the same way as TopicServers are, so that they can be remotely accessed.
However, they are not bound in the registry. Instead, the stub referring to
the Subscriber is passed to the addSubscriber method so the TopicServer
can store the reference away for later.
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subtopics where it matters while allowing most subtopics the convenience of
inheriting an ancestor topic’s ACL.

An ACL lists the users or groups that should be granted access, but this
still leaves open one of the most difficult aspects of security in a distributed
system. Namely, how should a server know which user’s access rights apply
for each incoming connection? Any robust solution to this problem relies on
the cryptographic mechanisms described in Section 9.6.

Exercises

10.1 How does messaging differ from sending bytes over a TCP connection?

10.2 How does messaging differ from sending an email message?

10.3 How does messaging differ from RPC?

10.4 Does using response messages turn a message-queuing system into the
equivalent of an RPC system? Why or why not?

10.5 Are web services an alternative to messaging and RPC systems, that
is, a third kind of communication middleware? Why or why not?

10.6 For each of the following communication methods, give one example
application scenario where you think it would be appropriate: message
queuing, publish/subscribe messaging, RPC. In each case, justify your
choice of communication method.

10.7 Recall that in publish/subscribe topic hierarchies, the wildcard + rep-
resents one component topic, whereas # represents a sequence of zero or
more components separated by slashes. Suppose a publish/subscribe
system has topics a, b, a/c, a/d, b/c, b/e, a/c/e, and a/d/e. For each
of the following subscriptions, specify which of those topics would be
included: a, a/+, a/#, a/c/+, a/+/e, #/e.

10.8 Suppose s is a JMS messaging session and d is a JMS messaging desti-
nation. Show how to create a Consumer that would receive all messages
sent to d containing a Symbol of IBM and that would also receive all
those containing a Price of 0, independent of their Symbol.

10.9 In the RMI programming example, suppose several Subscriber ob-
jects are all subscribed to a single TopicServer and that several
Publisher objects send messages to that TopicServer. Will all the
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Subscribers necessarily print the messages in the same order? Ex-
plain why or why not.

10.10 In the TopicServer implementation shown in Figures 10.9 and 10.10
on pages 459 and 460, the receive method invokes each subscriber’s
receive method. This means the TopicServer’s receive method will
not return to its caller until after all of the subscribers have received
the message. Consider an alternative version of the TopicServer, in
which the receive method simply places the message into a temporary
holding area and hence can quickly return to its caller. Meanwhile, a
separate thread running in the TopicServer repeatedly loops, retriev-
ing messages from the holding area and sending each in turn to the
subscribers. What Java class from Chapter 4 would be appropriate
to use for the holding area? Describe the pattern of synchronization
provided by that class in terms that are specific to this particular
application.

Programming Projects

10.1 Create an RMI analog of the message-storage server of Figure 9.7 on
page 415 and its companion client of Figure 9.8 on page 417.

10.2 Modify the TopicServer class shown in Figures 10.9 and 10.10 on
pages 459 and 460 as described in Exercise 10.10. Be sure to correctly
synchronize access to the list of subscribers.

10.3 Exercise 10.10 describes one way to modify the TopicServer class so
that the receive method does not need to wait for each subscriber’s
receive method, at least under normal circumstances. An alterna-
tive design to achieve that same goal would be for the TopicServer’s
receive method to create a new thread for each incoming message.
The thread would deliver that one message to the subscribers. Modify
the TopicServer class shown in Figures 10.9 and 10.10 on pages 459
and 460 in this alternate way. Be sure to correctly synchronize access
to the list of subscribers.

10.4 In the RMI example code given in Section 10.3.2, only a single topic
is used, bound in the registry to the name topic.1. Show how the
Publisher, TopicServer, and Subscriber programs can be general-
ized to take a topic name as an additional command line argument,
with each topic separately bound in the registry. Demonstrate the
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concurrent execution of two different topic objects on the same host,
each with its own subscribers.

10.5 In Programming Project 10.4, you accommodated multiple publish/
subscribe topics by having a separate TopicServer for each and by reg-
istering each in the registry. An alternative design would be to have a
single TopicServer object, but with the receive and addSubscriber

methods taking an extra argument that is the topic name. Develop
and demonstrate the code for this approach. You may want to include
extra methods for such purposes as adding topics and obtaining a list
of the current topics.

10.6 The publish/subscribe system provided as an RMI example in Sec-
tion 10.3.2 does not include a method for removing a subscriber from
a topic. Arguably, such a method would be redundant, because the
TopicServer class is prepared for subscribers that fail. A subscriber
that wishes to unsubscribe could simply arrange to intentionally fail.
However, that option doesn’t handle the case of a subscriber that is
subscribed to more than one topic and wishes to unsubscribe from one
of them. The design would be cleaner and more flexible if the Topic in-
terface and TopicServer class supported a removeSubscriber method.
Add one and demonstrate its use.

10.7 Section 10.3.2 shows how RMI can be used to convey textual messages
from publishers to subscribers by way of intermediate topic objects.
If you have the requisite skill in building user interfaces in Java, you
could use this RMI mechanism as the foundation for a chat-room ap-
plication or a multi-player game. Write such a program. Depending
on your design, you may want to incorporate some of the features
from earlier programming projects; for example, multiple topics could
support multiple chat rooms. You are also welcome to change the mes-
sage type; an application-specific class of game moves might be more
appropriate than textual strings.

10.8 The Publisher class in Figure 10.8 on page 458 makes use of the
Topic interface even though the MessageRecipient interface would
suffice. Change the class to use the more general interface and demon-
strate that, with appropriate changes elsewhere, the Publisher can
wind up communicating either directly with a Subscriber or with an
intermediary TopicServer as before.
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10.9 The Topic interface in Figure 10.7 on page 457 extends the base in-
terface MessageRecipient and also uses that same interface as the
argument type for the addSubscriber method. Demonstrate how
this allows one TopicServer to function as a subscriber to another
TopicServer. Assuming that you have done Programming Project
10.4, there is no need for the TopicServer that is functioning as a
subscriber to add itself to the other one using addSubscriber. In-
stead, you can leave the code for TopicServer unchanged and add
a new program that looks up the two TopicServer objects in the
registry and adds one as a subscriber to the other.

Exploration Projects

10.1 Read about message-driven beans in the Java EE Tutorial and write a
concise explanation of what they are and why they are more convenient
than directly using JMS.

10.2 Work through the Java Messaging System (JMS) examples in the Java
EE Tutorial. These are in chapter 46 as of Tutorial 7.

Notes

The topics in this chapter are subject to particularly rapid technical de-
velopments. As such, your best source of information is likely to be web-
sites. The Java website, http:// www.oracle.com/ technetwork/ java/ index.
html , has information both on RMI and on Java EE, which includes JMS.
The information on this site—and in many published books for that matter—
tends to emphasize the technical details over the big picture of how to use
the technology. One book that does provide a lot of big-picture advice on
the use of messaging is by Hohpe and Woolf [79].

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html


Chapter 11

Security

11.1 Introduction

I have addressed security issues in each preceding chapter because security
is a pervasive design issue, the same way performance is. Just as one can’t
discuss virtual memory mechanisms or persistent storage as though perfor-
mance didn’t exist and then devote a later chapter solely to performance, it
would have been wrong to treat security as an add-on. On the other hand,
there has been such sustained attention to security from so many talented
researchers that a rich, coherent body of security concepts has resulted,
worthy of a chapter of its own.

Section 11.2 recapitulates and amplifies on Chapter 1’s definition of se-
curity and statement of security objectives. It also lists a number of high-
level security principles, many of which were illustrated in particular cases
throughout the book.

Sections 11.3 and 11.4 discuss the two most well-developed areas of se-
curity technology: the authentication of user identities and the provision of
access control and information-flow control to limit the authority of users.
The latter topic builds on Chapter 7’s introduction to protection. (Another
well-developed area of security technology, cryptography, was addressed in
Chapter 9.)

Section 11.5 describes viruses and worms, some of the most prevalent
security threats, which fall largely outside of the scope of conventional au-
thentication and authorization controls. Because worms often propagate
by exploiting buffer-overflow vulnerabilities, I also describe this widespread
form of vulnerability in the same section.

Security measures are subject to imperfection, just like all other human
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endeavors. Sections 11.6 and 11.7 describe two responses to this reality: (1)
assurance techniques used to assess the quality of security measures and (2)
monitoring techniques used to collect information on attacks, particularly
any that are not thwarted.

Finally, Section 11.8 closes the book on a practical note by providing a
summary of key security best practices. Many of these have already been
mentioned in earlier chapters or will be mentioned in the course of Sections
11.2–11.7. However, by bringing all of them together in one place, I hope
to provide something of a checklist for your guidance. After this summary,
the chapter ends with exercises, programming and exploration projects, and
notes.

11.2 Security Objectives and Principles

Security is best understood as one aspect of overall system quality. Like
quality in general, it refers to how well the system meets the objectives of
its owner or other primary stakeholders. If you think about all the factors
that can stop a system from meeting those objectives, it should be clear
that quality stems from a combination of proper design, implementation,
and operation. Similarly, security spans all these areas. Before examining
what makes security different from other aspects of quality, I would like to
pin down the definition of quality a bit more carefully.

A tempting first definition of a quality system is that it is one that is
designed, implemented, and operated so as to meet the objectives of its
owner. However, this definition is somewhat unrealistic because it fails to
acknowledge that decisions, particularly regarding design, need to be made
without complete knowledge of how they will affect the system’s suitability.
Therefore, I would refine the definition to say that a quality system is one
that is designed, implemented, and operated to reduce to an appropriate
level the risk that it will fail to meet the objectives of its owner.

A system’s risk has been reduced to an appropriate level if it is prefer-
able to accept the remaining risk than to incur the costs of further reducing
the risk. This definition makes risk management sound like a straightfor-
ward economic calculation, like deciding whether to continue paying high
fire-insurance premiums for an old warehouse or instead build a new, more
fire-resistant warehouse. Unfortunately, the decisions regarding system de-
velopment and operation are not so precisely calculable.

An insurance company has a good estimate of how likely the warehouse
is to burn down; the probability a computer system will fail to meet objec-
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tives is far fuzzier. In addition, the insurance company has a good estimate
of how large a loss would result from the fire, denominated in dollars. In
contrast, the consequences of a low-quality computer system may be diffi-
cult to predict, and in some cases may not be adequately translatable into
financial terms. Consider, for example, a computer system that is essential
to national security.

Nonetheless, however imperfect the risk-management approach to sys-
tem quality may be, it provides the correct conceptual framework. The
management goal should be to expend resources in a way that provides a
commensurate reduction in risk. This requires keeping in view all three fac-
tors: cost, likelihood of failure, and consequences of failure. Moreover, all
three factors may be manipulable. For example, rather than building a new
warehouse, it may be preferable to reduce the amount of material stored
in the warehouse, thus reducing the possible loss. Similarly, rather than
making a computer system less likely to fail, it may be preferable to reduce
reliance on the system so that its failure would not be so significant. That
reliance may be reduced through the use of redundant computer systems as
well as through the use of noncomputerized systems.

Having provided this background on quality in general, I can define sys-
tem security similarly. A system is secure if it is designed, implemented,
and operated so as to reduce to an appropriate level the risk that it will
fail to meet the objectives of its owner, even in the face of adversaries. An
adversary is someone with objectives so contrary to those of the owner as
to strive to make the system fail.

One mildly interesting consequence of this definition is that security is
irrelevant for low-quality systems, because they will fail to meet their owners’
objectives even without intervention by adversaries. However, the more
interesting consequence is that the risk-management approach to system
quality needs to be extended to include the actions of adversaries.

A secure system need not be impervious to attack by adversaries. In
fact, it need not even be especially difficult for adversaries to interfere with.
Instead, what is needed is that the likelihood an adversary will choose to
mount an attack, the likelihood that the attack will succeed, and the damage
likely to be done to the system owner’s objectives by a successful attack
all combine to produce an appropriate level of risk relative to the cost of
available countermeasures.

Generally, an acceptable level of risk will not be achievable if the system
offers no resistance to attack. However, at some point further reduction
in the system’s vulnerability will be a less appropriate risk-management
approach than reducing the threats the system faces and the consequences
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of a successful attack.
Some of these risk-management actions may be nontechnical. For exam-

ple, if the organization can avoid creating disgruntled employees, its systems
will not face such severe threats, independent of how vulnerable they are.
As another example, a company might choose to accept the cost of repeated
data entry rather than store its customers’ credit-card numbers online. Do-
ing so will both reduce threats (because adversaries will have less motivation
to break into the system) and reduce the consequences of successful attacks
(because the company will lose less customer goodwill).

However, it would be wrong to equate technical efforts with only the
reduction of vulnerabilities and assume that all efforts to reduce threats or
the consequences of failure are nontechnical in nature. In fact, one of the
most active technical areas today is the monitoring of systems’ operation; I
discuss this in Section 11.7. This monitoring does nothing to reduce a sys-
tem’s inherent vulnerability. However, it both deters adversaries (especially
adversaries internal to the organization), thereby reducing threats, and al-
lows rapid-response incident-handling teams to quickly and efficiently get
systems operational again after attacks, thereby reducing losses.

So, what might the owner’s objectives be that an adversary could seek
to thwart? There is no end to the specific objectives an owner might have.
However, there are four broad classes of objectives that commonly arise in
discussions of security:

• The owner may wish to maintain the confidentiality of information
stored in the computer system. That is, the information should not
be disclosed to any person who has not been authorized to receive it.

• The owner may wish to maintain the integrity of information stored in
the computer system. That is, the information should not be modified
or deleted by any person who has not been authorized to do so.

• The owner may wish to preserve the availability of the services pro-
vided by the computer system. That is, persons authorized to use the
system should be able to do so without interference from adversaries.
The adversaries should not be able to cause a denial of service.

• The owner may wish to ensure accountability. That is, it should be
possible to determine how users have chosen to exercise their authority,
so that they can be held responsible for the discretionary choices they
made within the limits set by the security controls.
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All four of these objectives have a common prerequisite, user authenti-
cation. That is, the system must verify that each user is correctly identified.
Without reliable user identities, there is no way the system can enforce a
restriction on which users can retrieve or modify information and no way it
can keep records of who has done what. Even availability relies on authen-
tication, because without a way to determine whether a user is a bona fide
system administrator, there is no way to control the use of commands that
shut the system down.

To increase the chance that these objectives are achieved, system de-
signers have found it useful to have a guiding set of principles. These are
more specific than the overall risk-management perspective sketched earlier,
but less specific than individual technical measures. Most of these princi-
ples came to prominence in a 1975 paper by Saltzer and Schroeder, though
they date back yet further. The following list largely echoes Saltzer and
Schroeder’s:

Economy of mechanism: Simple designs that consistently use a small
number of general mechanisms are more likely to be secure. An ex-
ample would be Chapter 5’s point that a general-purpose transaction-
processing infrastructure is more likely to be secure than individual ad
hoc mechanisms for atomicity.

Fail-safe (and fail-noisy) defaults: A security system should be designed
to withhold access by default. If anything goes wrong in the granting of
authority, the result will be too little authority, rather than too much.
This makes the problem more likely to be fixed, because legitimate
users will complain. An example from Chapter 7 is Microsoft’s mech-
anism for resolving conflicts between ACL entries. That mechanism
governs the case when one entry says to allow a permission and an-
other says to deny it. The kernel itself is not fail-safe, because it gives
precedence to whichever entry is listed first. However, the higher-level
API used by the GUI is fail-safe, because it always gives precedence
to denying permission.

Complete mediation: Ideally, every access should be checked for author-
ity. Processes should not be allowed to continue accessing a resource
just because authority was checked at some earlier point. An exam-
ple from Chapter 7 is the change IBM made in deriving the AS/400
design from the System/38. The original design used ACLs to decide
whether to grant capabilities, but then allowed the capabilities to be
retained and used without any further reference to the ACLs. The
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revised design causes the ACLs’ record of authorization to be checked
more consistently.

Open design: The only secret parts of the security mechanism should be
cryptographic keys and passwords. The design should be inspected by
as many parties as possible to increase the chance of a weakness com-
ing to light. An example would be Chapter 9’s description of openly
standardized cryptographic algorithms. In particular, that chapter
mentioned that the MD5 algorithm was found to be weak. I would
not have been able to give you that warning without the public scrutiny
MD5 has received.

Separation of privilege: No one individual should be authorized to carry
out any particularly sensitive task. Instead, the system should be de-
signed so that two authorized users need to collaborate. Among other
benefits, this defends against the corruption of persons in positions of
authority.

Least privilege: Each process should operate with only the authority it
needs so that even if an adversary makes something go wrong in the
process’s execution, there will be many kinds of damage it can’t do.
In Chapter 4, I described a case where adversaries exploited a Time
Of Check To Time Of Use (TOCTTOU) vulnerability to trick a mail
delivery program into writing into sensitive files. I highlighted the
failure to use proper synchronization, resulting in the vulnerable race
condition. However, I could equally well point to that mail program
as a failure to honor the principle of least privilege. The mail program
needed authority only to write in each user’s mail file, not authority
to write in all files whatsoever. Because UNIX provided no easy way
to grant it just the requisite authority, it was given way too much, and
hence its vulnerability was rendered far more dangerous.

Psychological acceptability: All security mechanisms must have suffi-
ciently well-designed user interfaces that they will be used correctly.
An example is the graphical user interface Microsoft Windows pro-
vides for ACLs, as shown in Chapter 7. As I pointed out there, the
user interface design includes such features as hiding unnecessary com-
plexity.

Work factor: Just as you reason about the cost and benefit of security
countermeasures, you should reason about your adversaries’ cost/benefit
trade-offs. You should make sure that breaking into your systems
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takes more time and trouble than it is worth. An example would be
the discussion of cryptographic key length in Chapter 9. Keys are not
completely secure, in that they can be figured out with sufficient trial
and error. However, the usual key lengths are such that adversaries
will not have the resources necessary to find the keys in this way.

Compromise recording: If the system’s security is breached, information
about the breach should be recorded in a tamper-proof fashion. This
allows an appropriate technical and legal response to be mounted. An
important example of this principle, described in Chapter 9, is the use
of network intrusion detection systems.

Defense in depth: An adversary should need to penetrate multiple inde-
pendent defenses to be able to compromise a system’s functioning.
For example, Chapter 9 suggested the use of multiple firewalls, such
as hardware firewalls at the organizational and workgroup perimeters
and a software firewall on each desktop machine.

Alignment of authority and control: The same person should control
what a process will do and supply the authorization credentials for
the process’s action. In Chapter 7, I described the risk of Trojan
horse programs, which combine their executors’ authority with their
authors’ control, and setuid programs, which may combine their ex-
ecutors’ control with their authors’ authority. Many network server
programs have problems similar to setuid programs, in that they al-
low anonymous individuals elsewhere on the Internet some degree of
control over their actions while using a local user’s authority.

Physical security: The system’s owner should control physical access to
computer equipment and unencrypted data. An example from Chap-
ter 8 is that disk drives must be protected from physical theft. Oth-
erwise, confidentiality cannot be ensured. As another example, I once
visited an organization that was in the business of printing and mailing
out lots of checks to individuals. Much to my shock, their computer
room was wide open. Here the threat is to integrity rather than con-
fidentiality. An adversary could exploit physical access to change the
list of recipients for the checks—an attractive proposition.

Before leaving this section of generalities and diving into technical specifics,
I want to return to the topic of adversaries. Adversaries can be outside your
organization, but they can also be inside. Either way, they may exploit tech-
nical vulnerabilities, misuse authority they have been granted, or engage in
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social engineering, that is, tricking others who may have greater authority
into cooperating. For this reason, I generally use the word adversary rather
than such alternative terms as intruder and cracker. The word intruder
implies an external adversary, and cracker implies one who uses technical
means. The largest danger is that if you use one of these terms, you may
blind yourself to significant threats. For example, protecting your organiza-
tion’s network perimeter may be a fine defense against intruders—but not
against all adversaries.

Occasionally I will call an adversary an intruder or cracker, when appro-
priate. However, I will never call one a hacker, contrary to what has become
common usage. Decades before crackers co-opted the word, it meant some-
one who had a deep, creative relationship with systems. Many of the tech-
nologies taken for granted today were developed by people who described
themselves as hackers. Today, I would no longer dare call such a person a
hacker outside a knowledgeable circle of old-timers, for fear of being misun-
derstood. However, just because I no longer use the word in its traditional
sense does not mean I would use it for crackers.

11.3 User Authentication

You are probably most familiar with user authentication in a very basic form:
logging into a computer system using a password at the start of a session
of usage. This authentication mechanism suffers from several potentially
serious weaknesses:

• Because the authentication takes place only at the beginning of the
session, the computer system at best knows who was seated at the
keyboard then. No attempt is made to notice whether you have walked
away and someone else has taken your place.

• Because you identify yourself using something intangible (your knowl-
edge of a password), there is nothing to discourage you from sharing it
with someone else. You wouldn’t need to give up your own knowledge
to let someone else also have it.

• Similarly, someone can steal the password without depriving you of it,
and hence without drawing attention to themselves. As an example,
if you have written the password down, the adversary can copy it yet
leave you your copy.
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• Because the same password is used each time you log in, anyone who
observes you using it can then reuse it. This is true whether they phys-
ically observe your typing (known as shoulder surfing) or use technical
means to capture the password, either with covert software on the
computer where you are typing (a keylogger) or with a network packet
capture program (a sniffer). The use of network encryption prevents
sniffing but not the other techniques.

• Either the password is easy for you to remember, in which case it is
also probably easy for an adversary to guess, or you wrote it down,
thereby exposing it.

In addition, there are several other pitfalls that, though not unavoidable,
are common in actual password systems:

• If you type in your password without the computer system having
first authenticated itself to you, then you could fall prey to a spoof-
ing attack, in which the adversary sets up a fake system to capture
passwords and then presents them to the real system.

• If the system checks your password by comparing it with a copy it has
stored, then any exposure of its storage would reveal your password
and probably many others.

• If you have to choose your own passwords for many different systems
and are like most people, you will use the same password for several
different systems. This means any weakness in the security of one
system, such as the use of stored passwords, will spread to the others.

With such a long list of weaknesses, you can be sure that security spe-
cialists have devised other means of authentication. I will discuss those in
Section 11.3.4. Nonetheless, I would first like to explain how you can make
the best of password authentication because it is still widely used. I will
start with the most avoidable weaknesses, which are those listed most re-
cently: spoofing, storing passwords, and choosing the same passwords for
several systems.

11.3.1 Password Capture Using Spoofing and Phishing

One form of spoofing attack is to write a program that puts the correct
image on the screen to look like a logged-out system prompting for user-
name and password. Thus, when someone comes up to the computer and
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sees what looks like a login screen, they will enter their information, only
to have it recorded by the program. The program can avoid detection by
displaying a realistic error message and then logging itself out, returning
to the genuine login window. To defend against this version of a spoofing
attack, there needs to be something the genuine login window can do to
authenticate itself to users that no other program could do. Microsoft Win-
dows can be configured to take this approach by requiring users to press the
CTRL+ALT+DEL key combination at the start of a login. The reason Mi-
crosoft chose this combination is that Windows allows programmers to draw
anything at all to the screen and to respond to any other key combination,
but not that one particular key combination. Thus, so long as Windows is
running, you can be sure that CTRL+ALT+DEL is being responded to by
Windows itself, not by a spoofing program. The one hitch is that a spoofer
could have installed software that runs without Windows. To defend against
that, you would need to use physical security, which is important for other
reasons anyhow.

Another style of spoofing has become more problematic lately. A website
may be set up to look like a password-protected site, but really be in the
business of capturing the passwords. Users can be directed to the fake
site using sophisticated network manipulations, but more commonly they
are simply tricked into accessing it using a misleading email message, a
technique known as phishing. One important countermeasure in this case is
user education. Users need to be much less credulous of emails they receive.

However, there is also a technical dimension to the problem of web spoof-
ing. As described in Chapter 10, the SSL protocol used for encrypted web
communication allows your browser to verify the identity of the web server
by using a public-key certificate. Spoofing is made much less likely if you
type your password in only to web pages that have authenticated themselves
in this way. Unfortunately, some website designers are conditioning users
to ignore this principle. These websites use non-SSL connections to display
the form into which users type their passwords. The form then submits the
information back using SSL. The designers probably think all is well, be-
cause the actual password transmission is SSL-encrypted. However, unless
the user looks at the HTML source of the web form, there is no way to be
sure where the password will be sent. To protect against spoofing, the login
form itself should be sent using SSL. That way, the user will have seen the
server’s authentication before typing the password.



11.3. USER AUTHENTICATION 477

11.3.2 Checking Passwords Without Storing Them

To avoid storing passwords, a system should use a cryptographic hash func-
tion, such as the SHA-1 function described in Chapter 9. Recall that these
functions are designed not to be easily invertible and in practice to essentially
never have two inputs produce the same output. Therefore, the system can
feed a newly chosen password through the hash function and store the hash
value. When a user tries to log in, the system feeds the proffered password
through the same hash function and compares the resulting value with the
stored hash code, as shown in Figure 11.1. If the two hash codes are equal,
then for all practical purposes the system can be sure the correct password
was entered. However, if the stored hash values are disclosed, no one can
recover the passwords from them other than by trial and error. One cost to
user convenience is that the system cannot support a function to “remind
me of my password,” only one to “assign me a new password.” In most
settings, that is a reasonable price to pay.

11.3.3 Passwords for Multiple, Independent Systems

In principle, you can easily avoid the problems stemming from using the
same password on multiple systems. You just need to train yourself not to
pick the same password for shopping on Sleazy Sam’s Super Saver Site as
you use to guard your employer’s confidential records. In practice, however,
picking a new password for every system would lead to an unmemorizable
array of different passwords. Even one password for each general category
of system may be difficult. Therefore, an active area of development today
is password wallet systems, which store a range of passwords under the pro-
tection of one master password. The stored passwords constitute a security
vulnerability; this vulnerability is hopefully not so severe as the alternatives.

Another technique that can help users cope with multiple systems also
makes use of a master password but does not use it to protect storage of
individual passwords. Instead, the individual passwords are generated algo-
rithmically from the master password and the sites’ names. As an advantage
compared with a password wallet, nothing at all needs to be stored on the
client machines. As a disadvantage, there is no easy way to change the
master password.

11.3.4 Two-Factor Authentication

Even if a system is designed and operated so as to avoid the pitfalls of spoof-
ing, password storage, and password reuse, if it relies on password-controlled
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Figure 11.1: The system stores a cryptographic hash of the password when it
is set, and compares that with the hash of the attempted password. Because
the hash function is collision-resistant, equal hashes mean the password
was almost surely correct. Because the hash function is difficult to invert,
disclosure of the stored hash codes would not reveal the passwords.
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login as its sole authentication method, it will still possess the more funda-
mental vulnerabilities listed earlier. Some of those can be overcome with
sufficient user education or mitigated in other ways. For example, a system
can be designed so as to issue passwords (or pass phrases) that are random,
and hence difficult to guess, but are constructed out of real syllables or words
so as to be easily memorizable—an example of psychological acceptability.
To avoid problems with users walking away, a system can demand reentry
of the password before any particularly sensitive operation or after any suf-
ficiently long period of inactivity. All these countermeasures to password
threats are valuable but still leave something to be desired. Thus, I will
turn now to other authentication methods.

Rather than relying on something the authorized user knows (a pass-
word), an authentication mechanism can rely on something the user physi-
cally possesses, such as a card or small plug-in device. These physical devices
are generically called tokens. The big problem with tokens is that they can
be lost or stolen. Therefore, they are normally combined with passwords
to provide two-factor authentication, that is, authentication that combines
two different sources of information. Another way to achieve two-factor
authentication is by combining either a password or a token with biomet-
ric authentication, that is, the recognition of some physical attribute of the
user, such as a fingerprint or retinal pattern.

The most familiar two-factor authentication system is that used for bank
automated teller machines (ATMs), in which you insert or swipe a card and
also type in a four-digit personal identification number (PIN), which is es-
sentially a short password. Cards that use only magnetic stripes (as opposed
to integrated circuits) are rather weak tokens, because they carry fixed in-
formation rather than engaging in a cryptographic authentication protocol
and because they are easily copied. However, in the ATM application, they
provide sufficient security that they continue to be used in the US. In part,
this stems from other aspects of the system design, such as a limit on how
much money a customer can withdraw in a day.

One important difference between biometric authentication and other
techniques is that it is inextricably tied with actual human identity. A
password-protected or token-protected account can be issued to a person
known only by a pseudonym, and it will never be possible to ascertain the
true identity of the user. By contrast, even if a biometric authentication
user is initially enrolled without presenting any proof of true identity (such
as a passport), the user’s identity could later be deduced from matching
the fingerprint (or other biometric) with other records. This is both an ad-
vantage and a disadvantage. Where the highest standards of accountability
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are necessary, it can be advantageous. However, it also cuts into personal
privacy. For many purposes, pseudonymity is desirable, so that people can
dissociate some portion of their life from another unrelated, perhaps earlier,
portion.

When a user logs in using biometric authentication, some physical device
scans the user’s fingerprint or other attribute and then transmits a digitally
coded version of the scan to a computer for checking. If an attacker can
capture the digital version and later replay it, the system’s security will be
breached, just as would be the case if a password were captured and re-
played. One crucial difference, however, is that a user can be issued a new
password but not a new fingerprint. Therefore, the design of any biomet-
ric authentication system needs to be particularly resistant to such replay
attacks.

Biometrics can be used for identification as well as authentication. That
is, a user’s physical attributes can play the role of a username (select-
ing a specific user) as well as of a password (providing evidence that the
selected user is actually present). However, biometric identification is a
harder problem than biometric authentication, as it requires searching an
entire database of biometric information, rather than only the information
for a specific user. This broader search space increases the chance for er-
ror. Therefore, the most reliable systems still require the user to enter some
other identifier, such as a textual username.

11.4 Access and Information-Flow Controls

In Chapter 7, I briefly made the distinction between Discretionary Access
Control (DAC), in which the creator or other “owner” of an object can de-
termine access rights to it, and Mandatory Access Control (MAC), in which
organizational policy directly governs the access rights. In that chapter, I
then went into some depth on capabilities and access control lists (ACLs),
which are the two mechanisms commonly used to implement DAC. There-
fore, I will now focus on MAC in order to round out the picture.

The most well-developed MAC policies and mechanisms are geared to
protecting the confidentiality of information in national security systems,
where formal policies regarding the flow of information predated the intro-
duction of computer systems. My discussion in this section will be based on
the policies of the United States government, as is much of the published
literature. The general principles, however, apply equally well to other sim-
ilar systems of information classification and user clearance. In particular,
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after discussing government classification systems, I will briefly remark on
a currently popular application to commercial web servers. The goal there
is to limit the damage if an attacker achieves control over the web server.

The United States military sponsored research, particularly in the early
1970s, with the goal of allowing a single computer system to be shared
by principals operating on data of varying sensitivity and running programs
written by authors who are not fully trusted. This sort of system is known as
a Multi-Level Security (MLS ) system. In this context, the technical security
mechanism must enforce information-flow control rather than only access
control. That is, the system must protect sensitive information from indirect
disclosure rather than only from direct access by unauthorized principals.

To appreciate the need for information-flow control in an MLS system,
consider the simplest possible system: one handling information of two dif-
ferent levels of sensitivity. Suppose objects containing high-level information
are labeled H and those containing low-level (less sensitive) information are
labeled L. There are some principals, those with H clearance, who may read
and modify all objects. There are others, with L clearance, who may only
read L objects. So far, access control would suffice, granting each class of
principals access to specific objects. Now consider one further requirement:
an untrusted program run by an H principal must not be allowed to copy
data out of an H object and into an L object where an L principal could
retrieve it. Ideally, the program must also not leak the information any
other way, though as you will see, this is a challenging requirement. I can
summarize the requirements by saying that information initially contained
in an H object must not flow to an L principal, even through means other
than the L user accessing the object.

Real MLS systems handle more than two categories of information. The
information is categorized in two ways. First, there is an overall classifica-
tion level, indicating the degree to which disclosure could damage national
security. In the United States, four classification levels are used: unclassi-
fied, confidential, secret, and top secret. (Technically, unclassified is not a
classification level. However, it is handled like a level below the lowest true
classification level, which is confidential.) Second, there are compartments,
which indicate topics, such as nuclear weapons or international terrorism. A
principal may be cleared for access to data all the way up to top secret clas-
sification, but be limited to a specific compartment, such as nuclear weapons
only.

Each object is labeled with exactly one classification level but can be
labeled with any set of compartments because (for example) a document
might concern the acquisition of nuclear weapons by international terrorists.
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Figure 11.2 shows how each of the two kinds of labels forms a partially
ordered set, and Figure 11.3 shows how combining them results in another
partially ordered set, known mathematically as their Cartesian product.

In a partial order, two elements may be ordered relative to one another,
with x < y or y < x, or they may be unordered. For example, {I} and
{H} are unordered, because neither is a subset of the other. In security
applications, a principal with clearance p is allowed to view information
with label i only if p ≥ i, a condition known as p dominating i in the partial
order. This rules out disclosing information to principals with too low a
clearance level, but also to those who aren’t cleared for all the necessary
compartments.

Whenever an untrusted subject (that is, a process running an untrusted
program) has read from an object with label l1 and then modifies an object
with label l2, an unauthorized information flow may result unless l2 ≥ l1.
That is, information is only allowed to flow into an object whose consumers
could all have directly accessed the source information. Strictly speaking,
the information flow results not from the modification of an l2 object after
accessing the l1 object, but rather from the modification of an l2 object based
on the earlier access to the l1 object. However, it is extremely difficult to
test whether an earlier access has had some influence on a later modification.
In particular, the earlier access can have a subtle influence on whether the
later modification occurs, as well as an overt influence on the nature of
that possible later modification. Therefore, practical MLS systems generally
take the simpler, more conservative approach of forbidding any subject from
modifying an object that does not dominate all previously accessed objects
in the security label partial order.

The best-known information-flow control policy is known as the Bell-
LaPadula model, after the two MITRE Corporation researchers who devel-
oped it in the early 1970s.1 The key idea of the Bell-LaPadula model is to
associate with each subject a current level chosen by the principal running
the subject process. The current level must be dominated by the princi-
pal’s security clearance, but can be lower in the partial order if the principal
chooses. This flexibility to run at a lower current level allows a principal
to run subjects that modify low-level objects and other subjects that read
from high-level objects, but not to have any one subject do both. These
restrictions are enforced by two rules, each based on a formal property from

1LaPadula’s name was spelled La Padula on the original publications and therefore is
cited that way in the end-of-chapter notes and the bibliography. However, in this section
I will use the spelling LaPadula for consistency with most published descriptions, as well
as with LaPadula’s own current spelling of his name.
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Figure 11.2: The classification levels top secret (T), secret (S), confidential
(C), and unclassified (U) form a total order, as shown on the left. Sets
of compartments, on the other hand, form only a partial order, namely
the subset order in which one set of compartments is below another if it
has a subset of the other’s compartments. This is illustrated on the right
with three hypothetical compartments: nuclear weapons (N), international
terrorism (I), and human intelligence (H). Someone cleared for {I,H}, for
example, could read documents labeled with {I,H}, {I}, {H}, or {}.

T, {N, I, H}

S, {N, I, H}

C, {N, I, H}

U, {N, I, H}

T, {N, I}

S, {N, I}

C, {N, I}

U, {N, I}

U, { }

U, {N} U, {I}

Figure 11.3: Forming the Cartesian product of the two partial orders from
Figure 11.2 results in a 32-element partial order, each element of which pairs
one of the four classification levels (T, S, C, or U) with one of the eight sets
of compartments (ranging from {N, I,H} down to {}). Of those 32 elements,
only 11 are shown here in order not to clutter the diagram. What you should
note in the diagram is the definition of ordering in the Cartesian product: a
pair (level1, compartments1) dominates (level2, compartments2) only if both
level1 ≥ level2 and compartments1 ⊇ compartments2.
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Bell and LaPadula’s mathematical model, as follows:

• A subject running with current level c may read only from objects
with level r such that c dominates r, that is, c ≥ r. This corresponds
to Bell and LaPadula’s simple security property.

• A subject running with current level c may only modify an object
with level m only if m dominates c, that is, m ≥ c. This can be de-
rived from Bell and LaPadula’s *-property (pronounced star-property),
which prevents untrusted programs from transferring information into
inappropriate objects.

In order for these two rules to effectively regulate information flow, the
Bell-LaPadula model also includes tight restrictions on how a subject may
change current levels. In practical systems, the current level is selected when
a principal logs in and then is left unchanged until the principal logs out.

You can gain some appreciation for the role of untrusted subjects in the
Bell-LaPadula model by considering that a principal may be simultaneously
logged in at two adjacent terminals, one set to a high current level (as
high as the principal is allowed) and the other set to a low current level
(unclassified, with no compartments). The human principal may display
highly sensitive material on one terminal and type it into an unclassified file
on the other. However, no untrusted subject (that is, no process running an
untrusted program) may do the same information transfer. The idea is that
the human principal is granted a high-level clearance only upon providing
evidence of trustworthiness. Moreover, the principal can be monitored to
detect suspicious meetings, an excess of cash, and other signs of corruption.
The author of the untrusted program, on the other hand, is beyond reach of
monitoring, and the group of low-clearance principals who could be reading
the leaked data is too large to monitor.

Mandatory Access Control of the Bell-LaPadula variety can also be com-
bined with Discretionary Access Control using a mechanism such as access
control lists. In fact, Bell and LaPadula themselves recommended this. The
underlying security principle is Need-To-Know ; that is, the possessor of sen-
sitive information ought not to disclose it to all principals of appropriately
high clearance level, but rather only to those with a specific need to know.
Compartments provide a crude approximation to the Need-To-Know prin-
ciple, but many people cleared for a particular compartment will not have a
need to know any one specific document within that compartment. There-
fore, it is wise to give the owner of an object the ability to further restrict
access to it using an ACL. However, unlike in a pure DAC system, the ACL
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restrictions serve only to further refine the access limits set by the simple
security and *-properties. An otherwise cleared subject may be denied ac-
cess for lack of an appropriate ACL entry. However, adding an ACL entry
cannot grant access to a subject running at an inappropriate current level.

Even with the Bell-LaPadula simple security and *-properties, an un-
trusted subject may not be completely stopped from leaking sensitive in-
formation. Rather than leaking the information through a file, network
connection, or other legitimate storage or communication object, the sub-
ject could disclose the sensitive information by way of a covert channel. A
covert channel is a mechanism not intended to be used for communication,
but which can be manipulated by one subject and observed by another,
thus achieving communication. An example would be if a subject with ac-
cess to highly sensitive information varied the demands it placed on the
CPU or disk based on the sensitive information, and another subject, run at
a lower clearance level, was able to detect the changes in system utilization.
Complete protection against covert channels is impractical, but if processes’
resource utilization is tightly controlled, the risk can be reduced.

Moving outside the area of military classification levels, one currently
popular MAC system is Security-enhanced Linux (SELinux ), a version of
the Linux kernel. This system is quite flexible and can enforce a wide variety
of rules regarding which objects each subject can read and write. Objects are
tagged with type labels, which are a generalization of classification levels and
compartments. Subjects are assigned to domains, which are a generalization
of clearance levels. One popular configuration tags the files containing web
pages with a specific label and assigns the Apache web server to a domain
that is allowed to read those files but not to write them nor to read any
other files. That way, even if an attacker can exploit some bug in the web
server to obtain control over it and make it execute arbitrary code, it cannot
leak confidential information or damage the system’s integrity. This is an
example of the principle of least privilege.

11.5 Viruses and Worms

As the Bell-LaPadula model and SELinux illustrate, security mechanisms
need to limit the actions not only of users, but also of programs. Limiting
programs’ actions is important because they may be under the control of
untrusted programmers as well as because they may have exploitable bugs
that allow them to be misused. In this section, I will address two particular
kinds of adversarial programs, or malware, that pose especially widespread
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security threats. The common feature of viruses and worms, which distin-
guish these two kinds of malware from garden-variety Trojan horses, is that
one of the actions they are programmed to take is to propagate themselves
to other systems. Thus, an adversary can effectively attack all the comput-
ers on the Internet, not by directly connecting to each one, but rather by
attacking only a few initial systems and programming each attacked system
to similarly attack others. Through their sheer ubiquitousness, viruses and
worms constitute significant threats.

Both worms and viruses strive to replicate themselves. The difference is
in how they do this. A virus acts by modifying some existing program, which
the adversary hopes will be copied to other systems and executed on them.
The modified program will then run the inserted viral code as well as the
original legitimate code. The viral code will further propagate itself to other
programs on the infected system as well as carrying out any other actions
it has been programmed to perform. A worm, on the other hand, does
not modify existing programs. Instead, it directly contacts a target system
and exploits some security vulnerability in order to transfer a copy of itself
and start the copy running. Again, the worm can also be programmed to
take other actions beyond mere propagation. Even propagation alone can
be a significant problem if carried out as fast as possible, because the rapid
propagation of worm copies can constitute a denial-of-service attack.

Viruses were a greater problem in the days when the major communica-
tion channel between personal computers was hand-carried diskettes. As the
Internet has become dominant, worms have become the more common form
of self-propagating malware. However, because of the earlier prominence of
viruses, many people inaccurately use the word virus to refer to worms.

Any network-accessible vulnerability that a human intruder could exploit
can in principle be exploited by a worm in order to propagate. Historically,
for example, worms have used password guessing. Also, as mentioned in
Chapter 7, email worms are common today; these worms arrive as email at-
tachments and are run by unwary users. However, the most serious means of
worm propagation has come to be the exploitation of buffer-overflow vulner-
abilities. Therefore, I will explain this common chink in systems’ defenses.

Most programs read input into a contiguous block of virtual memory,
known as a buffer. The first byte of input goes into the first byte of the
buffer, the second into the second, and so forth. Often, the program allo-
cates a fixed-size buffer rather than allocating progressively larger ones as
more and more input arrives. In this case, the programmer must test the
amount of input against the size of the buffer and take some defensive action
if an unreasonably large amount of input is presented, which would other-
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wise overflow the buffer. Unfortunately, programmers perennially omit this
checking. Therefore, adversaries are perennially able to find programs that,
when presented with unusually large inputs, try to write the input data into
addresses beyond the end of the buffer. This is particularly problematic
for network server programs, which can be provided input by an adversary
elsewhere on the Internet.

The consequences of a buffer overflow depend heavily on the program-
ming language implementation, operating system, and computer architec-
ture. In modern languages such as Java, any attempt to write past the end
of an array is detected. Often, the detected error will cause the attacked
server program to crash. In some cases, this is victory enough for an adver-
sary. However, it is minor compared with the damage an adversary can do
when exploiting a buffer overflow in a program written using more primitive
technology, such as typical implementations of the programming language
C. In those settings, the extra input data may be written to addresses be-
yond the end of the buffer, overwriting other data assigned to those later
addresses.

One possible tactic an adversary could use is to look for a server program
in which a buffer is followed by some particularly sensitive variable, such as
a Boolean flag indicating whether a password has been successfully checked
yet. However, buffer-overflow exploits typically take a different approach,
which allows the adversary to inject entirely new instructions for the process
to execute, which it ordinarily would not even contain. In this way, the server
process can be made to take any action whatsoever, within the limits of the
authority it has been granted. This is an extreme example of misalignment
between authority and control.

To understand how a buffer overflow can lead to the execution of arbi-
trary code, you need to consider some facts about typical runtime stacks,
which are described in Appendix A. Often, program variables such as buffers
are allocated their space within the stack. The stack also typically contains
the return address for each procedure invocation, that is, the address of
the instruction that should be executed next when the procedure invocation
returns. If the stack grows downward in virtual memory, expanding from
higher addresses down into lower ones, then the return address will follow
the buffer, as shown in Figure 11.4(a).

In this circumstance, which arises on many popular architectures, a
buffer overflow not only can overwrite data values, as shown in Figure 11.4(b),
but also can overwrite the return address, as shown in Figure 11.4(c).
This form of buffer overflow is commonly called smashing the stack. When
the current procedure invocation completes, the overwritten return address
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Figure 11.4: If input (shown in grey) is allowed to overflow the amount of
memory allocated on the stack for an input buffer, it can overwrite other
data values, as shown in part (b), or the return address, as shown in part
(c). In the latter case, the modified return address can point to attack code
included in the oversized input.

causes the processor to jump to an adversary-specified instruction address.
On its own, this would allow the adversary only to choose which existing
code to execute. However, when taken together with one other factor, it
provides the means to execute code provided by the adversary.

Many architectures and operating systems provide virtual memory mech-
anisms that allow each page of virtual memory to be independently read-
protected or write-protected, but that do not allow a distinction between
reading data and fetching instructions. In this circumstance, the pages hold-
ing the stack, which need to be readable for data, can also contain executable
code—even though extremely few programs legitimately write instructions
into the stack and then jump to them.

An adversary can exploit this situation by writing a large input that
not only overflows the buffer and overwrites the return address, but also
contains the bytes constituting the adversary’s choice of machine language
instructions. These machine language instructions are labeled as attack code
in Figure 11.4(c). The overwritten return address is used to jump into the
buffer itself, thereby executing the provided instructions.

Because these exploits are so prevalent, there has been considerable in-
terest recently in modifying virtual memory mechanisms so as to allow stack
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space to be readable (and writable) but not executable. Other than tech-
niques such as this for preventing malware from entering, the major counter-
measure has been the use of antivirus scanning programs, which commonly
scan for worms as well. These programs look for distinctive patterns of
bytes, known as signatures, found in known viruses and worms. As such,
scanners need to be frequently updated with signatures for newly emerging
threats.

11.6 Security Assurance

Organizations directly influence their systems’ security through the man-
ner in which the systems are installed and operated, as well as through
the design of components developed in-house. However, the organizations
also exercise more indirect control by choosing to procure security-critical
components from vendors that demonstrate that the components are suited
to the organizations’ needs. In this section, I will explain how this kind
of security assurance is provided by vendors and interpreted by consumers.
The component in question may be an operating system, middleware sys-
tem, or a network device such as a firewall or intrusion detection system,
among others. In the security assurance field, any of these may be referred
to as a Target of Evaluation (TOE ), because the assurance derives from
an independent evaluation of how well the TOE satisfies stated security
requirements.

The assurance of security-related products is governed by an interna-
tional standard called the Common Criteria, because it was developed to
harmonize previously independent national standards. The Common Crite-
ria are also sometimes known by their International Standards Organization
number, ISO 15408. The Common Criteria define a process in which a ven-
dor contracts with a qualified independent assessor to evaluate how well a
product meets a set of security requirements known as a Security Target
(ST ).

Each ST is an individual requirements document specific to the particu-
lar product under evaluation, that is, specific to the TOE. However, because
consumers can more easily compare products whose STs share a common
basis, the STs are built in a modular fashion from common groups of re-
quirements. A published group of requirements, intended to be used as the
basis for multiple STs, is called a Protection Profile (PP).

Just as STs are built from standard PPs, each PP is assembled by choos-
ing from a standard menu of potential requirements. Extra custom require-
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ments can be added at either stage, but the bulk of any ST’s requirements
will come from the standard list by way of one of the standard PPs. Thus,
consumers are in a better position to learn their way around the landscape
of potential requirements. This is critical, because a product certified by an
independent assessor to meet its ST is worthless if that ST does not contain
requirements appropriate to a particular consumer’s needs.

The requirements contained in PPs and STs fall into two general cat-
egories: functional requirements and assurance requirements. An example
of a functional requirement would be a mandate for a spoofing-resistant
login method. (Microsoft Windows would satisfy this requirement, using
CTRL+ALT+DEL.) An example of an assurance requirement would be a
mandate that detailed design documents, testing reports, and samples of
security-critical code be reviewed by outside evaluators.

The assurance requirements are summarized by a numerical Evaluation
Assurance Level (EAL), in the range from EAL1 to EAL7. For example,
an ST based on EAL4 will contain moderately rigorous demands regarding
the evidence that the system actually meets its functional requirements, but
none that go beyond ordinary good development practices outside the secu-
rity field. At EAL5 and above, specific security-oriented assurance practices
need to be incorporated into the development process, including progres-
sively increasing use of semiformal and formal methods. Figure 11.5 gives a
brief rubric for each EAL, taken from the Common Criteria documentation.

Although each EAL includes a whole package of sophisticated assurance
requirements, the EALs can be easily understood in a comparative way: a
higher-numbered EAL is stricter. This makes it tempting to focus on the
EALs. However, you need to remember that an EAL, even a very strict one,

EAL Rubric

EAL1 functionally tested
EAL2 structurally tested
EAL3 methodically tested and checked
EAL4 methodically designed, tested, and reviewed
EAL5 semiformally designed and tested
EAL6 semiformally verified design and tested
EAL7 formally verified design and tested

Figure 11.5: This table shows brief rubrics for the Common Criteria Evalu-
ation Assurance Levels; expanded descriptions are available in the Common
Criteria documentation.
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tells only how thorough a job the vendor has done of demonstrating that the
TOE meets the functional requirements that are in the ST. It tells nothing
about how demanding those functional requirements are. More importantly,
the EAL tell nothing about how well matched the requirements are to your
needs.

As an example, Microsoft contracted for a Common Criteria evaluation
of one particular version of Windows, relative to an ST that included the
assumption that the only network connections would be to equally secure
systems under the same management and that all authorized users would
be cooperative rather than adversarial. Thus, it gave no indication how
well the system would fare if confronted with serious adversaries, either
within the user population or out on the Internet. These issues arise from
the functional requirements in the ST, completely independent of the EAL.
Figure 11.6 shows the relevant language from Microsoft’s ST.

The weakness of these small excerpts from one particular ST may leave
you wondering about the value of the Common Criteria process. The lesson
you should take away is not that the Common Criteria process is worthless,
but rather that it relies upon educated consumers. To benefit from the
process, you need to understand its vocabulary, such as what the difference
is between an EAL and an ST.

11.7 Security Monitoring

System operators have at least three reasons to monitor for attacks, both
successful and unsuccessful:

• By gaining a better understanding of adversaries’ behavior, you can
develop better countermeasures.

• By putting adversaries on notice that you may gather enough evidence
to allow successful prosecution or other punishment, you may deter
attacks. This tends to work better against adversaries within your
organization than against adversaries on the other side of the Internet.
You should coordinate in advance with legal counsel on appropriate
policies and notices.

• By quickly detecting a successful attack, you can limit the damage, and
by obtaining accurate information about the extent of the damage, you
can avoid overly aggressive responses, such as reinstalling software on
uncompromised systems. Overly aggressive responses not only take
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• Any other systems with which the TOE communicates
are assumed to be under the same management control
and operate under the same security policy constraints.
The TOE is applicable to networked or distributed envi-
ronments only if the entire network operates under the
same constraints and resides within a single management
domain. There are no security requirements that address
the need to trust external systems or the communications
links to such systems.

• Authorized users possess the necessary authorization to
access at least some of the information management [sic]
by the TOE and are expected to act in a cooperating
manner in a benign environment.

Figure 11.6: These excerpts are from the Windows 2000 Security Target,
ST Version 2.0, 18 October 2002, prepared for Microsoft Corporation by
Science Applications International Corporation.

time and money, they also require system downtime. Thus, an overly
aggressive response magnifies the damage done by an attack.

For all these reasons, security professionals have been very active in
developing monitoring techniques. I already mentioned one in Chapter 9,
namely network intrusion detection systems (IDSes). Others that I will
summarize here include robust logging facilities, integrity checking software,
and honeypots.

Intrusion detection systems are perhaps best thought of as anomaly de-
tectors for network traffic. Many IDSes can be configured to spot anomalous
traffic even if it results from an adversary internal to your network, rather
than an intruder. Thus, the name IDS is somewhat misleading. An IDS
may look for specific attack signatures or may respond to deviations from
past patterns of activity. For example, if a normally quiet desktop machine
starts spewing out UDP datagrams at the maximum rate the network can
carry (as it would if infected with the SQL Slammer worm), even an IDS
that had no signature for the specific worm ought to raise a warning about
the sudden traffic.

Other anomalous events may be detected internal to a particular system,
rather than in network traffic. For example, an operating system may be
programmed to note repeated failed attempts to log in as the system admin-
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istrator, which could constitute a particularly dangerous password-guessing
attack, worthy of notice even if unsuccessful. These sorts of anomalies are
routinely logged by systems into a chronological event log, which can be
used to reconstruct a break-in after the fact as well as serving as a source
to drive real-time alerts. The biggest technical challenge is that a successful
attack may give the adversary the necessary access privileges to clean up
the log, covering traces of the attack. High-security systems therefore use
append-only logging devices. Log entries can also be sent over the network
to a centralized, heavily-protected logging server.

Another non-network monitoring approach is to periodically check the
integrity of a system’s configuration, such as whether any of the system
programs have been modified. Successful attackers will frequently modify
programs or configuration files so as to give themselves a back door, that is, a
second way in to use even if the initial vulnerability is fixed. Thus, a periodic
check may turn up signs of a successful break-in since the previous check,
even if the break-in was sufficiently stealthy to otherwise go unnoticed.

In addition to periodic checks, the same integrity checking can be done
after any break-in that comes to notice through other means. Without
integrity checking, a system administrator has little choice but to treat the
whole system as compromised, scrub it clean, and reinstall from scratch.
Thus, integrity checking not only allows successful attacks to be detected,
it also guides the mounting of an appropriate response.

An example integrity monitoring system is Tripwire. The basic principle
of operation is that a cryptographic hash of each critical file is computed
and stored in a tamper-resistant database, such as on a CD that is writable
only once. The Tripwire program itself is also stored in tamper-resistant
form. To check the system, the known-good copy of Tripwire recomputes
the cryptographic hashes and compares them with the stored copies.

The integrity checking needs to be done with a tamper-resistant program
because attackers frequently install modified versions of system programs
that hide the corruption. For example, the attacker may install a version of
ps that hides the attacker’s processes and a version of ls that shows the ps

and ls programs as though they were unmodified. This kind of camouflage
is commonly called a root kit.

The final form of security monitoring I will mention is the use of honey-
pots. A honeypot is a decoy system used specifically to monitor adversaries.
It is configured to appear as realistic as possible but is not used for any gen-
uinely valuable purpose other than monitoring. It is subject to extreme but
clandestine monitoring, so as to fully record adversaries’ behavior but not
tip them off. Because no legitimate user will ever have reason to connect to
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the honeypot, the monitoring can be comprehensive—no anomaly detection
filtering is needed to distinguish legitimate traffic from attack traffic.

By letting an adversary take over the system, rather than immediately
repelling the attack, you can learn more about the attack techniques be-
yond the initial connection and thus learn more about vulnerabilities you
need to repair on other systems, as well as other countermeasures you need
to take. However, because the adversary is allowed to take over the hon-
eypot, it must be thoroughly firewalled against outbound attacks so that
you don’t provide the means to launch attacks on further systems. Humans
should also monitor the honeypot continuously and be ready to intervene.
These considerations help explain why honeypots, although quite in vogue,
are best left to large organizations with experienced security professionals.
Smaller organizations can still benefit because honeypots largely provide
epidemiological evidence about what worms are circulating, which can serve
the whole Internet community.

11.8 Key Security Best Practices

Appropriate security practices depend on many factors, including whether
you are defending your home computer or an employer’s high-value system
and whether you are engaging in custom application-software development
or only procuring, installing, configuring, and operating existing systems.
However, I will attempt a unified list of best practices with the understand-
ing that some may be more applicable than others to any one context:

• Consult others. Everybody, even home users, should at least read the
website of the SANS (SysAdmin, Audit, Network, Security) Institute,
http:// www.sans.org . Organizations should also hire reputable con-
sultants, as well as engage in conversations with legal counsel, those
responsible for noncomputer security, and the human resources de-
partment.

• Adopt a holistic risk-management perspective. Consider how much
you have to lose and how much an adversary has to gain, as well
as how likely an adversary is to be caught and punished. Are any of
these factors more manipulable than the inherent vulnerability of your
system?

• Deploy firewalls and make sure they are correctly configured. The
best approach combines hardware firewalls guarding organizational

http://www.sans.org
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and workgroup perimeters with software firewalls guarding individ-
ual machines. Even a home can use this approach, often with a NAT
router serving as the hardware firewall.

• Deploy anti-virus software. An organization should have server-based
software that scans all incoming email so as not to be at risk should
an individual client machine fail to scan. However, the individual
client machines should also have protection for defense in depth and
in particular to guard against infections that sneak past the network
perimeter by being carried in on a portable computer or storage device.

• Keep all your software up to date. This includes not only system soft-
ware such as the operating system, but also any application software
that may be exposed to data from the network. Today, that includes
nearly everything.

• Deploy an IDS, integrity checking software such as Tripwire, and a
robust logging platform. These steps are not very practical for typical
home users yet.

• Assume all network communications are vulnerable; use end-to-end en-
cryption rather than relying on the security of network infrastructure.
The same principle applies if storage media are physically shipped
between locations.

• Use two-factor user authentication, as described in Section 11.3.4.

• Maintain physical security over computer equipment and be vigilant
of service personnel or others with extraordinary physical access.

• Do what you can to stay on good terms with employees and to part
from them cleanly. When hiring for particularly sensitive positions,
such as system administrators, candidly disclose that you will be check-
ing background and do so. Establish realistic expectations that do
not encourage people to work nights or weekends when no one else is
around. Have employees cross-train one another and take vacations.

• Establish and clearly communicate policies on acceptable use and on
monitoring.

• Beware of any security-relevant phone calls and emails that you do not
originate, as well as of storage media that arrive by mail or courier.
A “vendor” with a critical patch you need to install could be a con
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artist. The same is true of a law-enforcement agent or a member of
your organization’s upper management; being cooperative should not
preclude taking a minute to politely confirm identity and authority.

• Examine closely any case where the user whose authority is exercised
by a process is not the same as the user who controls the process’s
actions:

– If at all possible, never run a program from an untrusted source.
Failing that, run it with the least possible authority and the great-
est possible monitoring.

– If you need to write a setuid program, check very carefully what
it does with all user input. Might any buffer overflow? Might
any input be interpolated into a shell command or otherwise al-
lowed to exert control? Did a programmer insert an intentional
“trapdoor,” whereby a particular input can trigger the program
to bypass normal security controls? Are there any TOCTTOU
races? Also, have the program owned by a special-purpose user
account that is granted only the necessary authority. More gen-
erally, review the principles listed in Section 11.2.

– Examine any program that communicates over the network ac-
cording to the exact same standards as a setuid program.

Exercises

11.1 To keep certain individuals from flying on commercial airliners, a list
is maintained that airlines must check before issuing a boarding pass.
The pass may be issued over the web, as well as at the airport. The
pass must be presented to a human at the airport along with an identi-
fying document. The human, who uses no computer technology, checks
that the name on the pass matches that on the identifying document
and that the photo on the identifying document matches the appear-
ance of the person presenting it. This check is done at the perimeter
of the secured portion of the airport as an admission condition. You
may assume that identifying documents are hard to forge and that
getting past the perimeter control without going through the check is
difficult.

(a) How could an adversary get admitted to the secure area despite
being on the no-fly list?



11.8. KEY SECURITY BEST PRACTICES 497

(b) Is the vulnerability you identified in part (a) one that could be
explained by inattention to any of the security principles listed
in Section 11.2?

(c) Can you design a countermeasure to deter the exploitation of
the vulnerability you identified? Would the use of additional
computer technology help you do so without sacrificing desirable
properties of the current system?

11.2 An organization’s checks are preprinted with a statement that checks
for $100 or more require a handwritten signature, whereas smaller
checks are valid with a printed signature. How is this explainable in
terms of the general principles of security enumerated in Section 11.2?

11.3 Section 11.2 contains a long list of general security principles. For each
of the following audiences, suppose you had time to explain only a few
of the principles. Which few would you explain? Why?

(a) software developers designing and programming new systems

(b) information technology staff who will be purchasing, configuring,
and administering systems

(c) the Chief Information Officer, who is the executive supervising
both of the above groups

11.4 Another weakness of password security is that there is always an ad-
ministrator to whom a user can turn upon forgetting a password. That
administrator has the ability to reset the password. This person may
be gulled by a con artist (who tells a pitiful tale of woe) into reset-
ting a password without first authenticating the user in some alternate
manner, for example, by using a photograph on an ID card.

(a) What is the name for the general category of threat of which this
is an example?

(b) Even if the human customer-service staff can’t be stopped from
resetting passwords like this, the system can be programmed to
print out a letter acknowledging the password change, which is
mailed by ordinary postal mail to the registered address of the
user. Why would this enhance security, even though it wouldn’t
prevent the adversary from obtaining access?

11.5 What is two-factor authentication? Give an example.
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11.6 Why should a blank web form to be filled in with a password be
downloaded to the browser via SSL, rather than using SSL only to
send the filled-in form back to the server?

11.7 Draw the following partially ordered sets:

(a) One based on the subset ordering for sets of compartments, as
in Figure 11.2 on page 483, but using only the N and I compart-
ments.

(b) The full Cartesian product of your answer from part (a) and the
total ordering of {T,S,C,U}. Unlike Figure 11.3 on page 483, no
elements should be left out.

11.8 Figure 11.7 shows the full 32-element Cartesian product of the 4-
element and 8-element partial orders shown in Figure 11.2 on page 483.
However, the elements are not labeled with their security classification
levels and sets of compartments; instead, they are shown just as cir-
cles. What should the labels be for the eight circles shown in black?
(Note that this diagram is arranged differently than the 11-element
excerpt in Figure 11.3 on page 483. Do not expect to find those 11
elements in the same positions here.)

11.9 Using the Bell-LaPadula model, with the compartments {N, I,H} and
classification levels {T, S,C,U}, which of the following statements are
true?

(a) A subject with current level C and compartments N and H may
read from an object with level C and compartments N and H.

(b) A subject with current level C and compartments N and H may
read from an object with level C and compartment N.

Figure 11.7: This is an unlabeled version of the Cartesian product of the
partial orders shown in Figure 11.2 on page 483.



11.8. KEY SECURITY BEST PRACTICES 499

(c) A subject with current level C and compartments N and H may
read from an object with level C and compartments N, I, and H.

(d) A subject with current level C and compartments N and H may
read from an object with level C and compartments N and I.

(e) A subject with current level C and compartments N and H may
read from an object with level S and compartments N and H.

(f) A subject with current level C and compartments N and H may
read from an object with level S and compartment N.

(g) A subject with current level C and compartments N and H may
read from an object with level S and compartments N, I, and H.

(h) A subject with current level C and compartments N and H may
read from an object with level U and no compartments.

(i) A subject with current level C and compartments N and H may
write into an object with level C and compartments N and H.

(j) A subject with current level C and compartments N and H may
write into an object with level C and compartment N.

(k) A subject with current level C and compartments N and H may
write into an object with level C and compartments N, I, and H.

(l) A subject with current level C and compartments N and H may
write into an object with level C and compartments N and I.

(m) A subject with current level C and compartments N and H may
write into an object with level S and compartments N and H.

(n) A subject with current level C and compartments N and H may
write into an object with level S and compartment N.

(o) A subject with current level C and compartments N and H may
write into an object with level S and compartments N, I, and H.

(p) A subject with current level C and compartments N and H may
write into an object with level U and no compartments.

11.10 In the Bell-LaPadula model, under what conditions may a subject read
from an object and then modify the object to contain new information
that is derived from the old?

11.11 Why, in the Bell-LaPadula model, is it important that a principal can
run a subject at a current security level below the one the principal is
cleared for?
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11.12 In the Bell-LaPadula model, a subject running at a high current level
may read from an object that is labeled with a lower level. In a system
with readers-writers locks, this could block a subject running at a lower
level from writing the object. Explain why this could compromise the
design goals of the Bell-LaPadula model.

11.13 Viruses have historically been a problem primarily on systems designed
with little regard for the principle of least privilege. Explain why this
would be expected. Keep in mind the distinction between viruses and
worms.

11.14 A Common Criteria assessment includes inspection not only of the
system design and code, but also of documentation intended for system
administrators and users. Why is this relevant?

11.15 Explain the difference in the Common Criteria between a PP, an ST,
and an EAL.

11.16 Is a system certified at a high EAL necessarily more secure than one
certified at a low EAL? Explain.

11.17 Distinguish honeypots from IDSes.

11.18 Why should the code of network server programs be audited for cor-
rect processing of received input in the same way a setuid program’s
processing of user input is audited?

11.19 Section 11.3 points out that password-based user authentication is
vulnerable to a user walking away and being replaced at the keyboard
by an adversary. Section 11.3.4 indicates that this vulnerability can be
mitigated, but not eliminated, by demanding reentry of the password
at appropriate moments.

(a) Explain how the vulnerability might be more thoroughly miti-
gated using an appropriately designed token.

(b) Explain how the vulnerability might be eliminated using biomet-
ric authentication.

Programming Projects

11.1 Write a program that runs all strings of six or fewer lowercase let-
ters through a library implementation of SHA-1. Report how long
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your program takes, with enough details of the hardware and software
context that someone could approximately replicate your result.

Consider the system shown in Figure 11.1 on page 478 in which the
hash function can be SHA-1. The point of this system is to increase
an adversary’s work factor if the stored value is disclosed. Based on
your experiment, you should have some indication how much the work
factor increases by, given an assumption that users pick passwords of
the sort your program checked. Under what sorts of circumstances
would this increase in work factor be sufficient?

11.2 Most programming environments provide some means of generating
cryptographically-strong (pseudo-)random numbers. For example, in
Java you can use the class java.security.SecureRandom. Many sys-
tems also contain a file that lists English words, one per line; for
example, many Linux systems have this as /usr/share/dict/words.
If your system doesn’t have such a file, you can find one to download
on the web. Write a program that randomly chooses four words, each
of which is four letters long, and prints them out with hyphens be-
tween them to serve as a passphrase. For example, you might get the
output mean-chef-pour-pubs. On one example Linux distribution,
the word list contained 2236 four-letter words. How many four-word
passphrases can be formed from them? How long would a random
string of lowercase letters need to be to have a comparable number of
possibilities? Which seems to be more memorizable?

Exploration Projects

11.1 User authentication systems are successfully attacked all the time,
usually without generating much publicity. However, when the user in
question is a celebrity, the newspapers sit up and take notice. Write
a summary of a user-authentication failure involving Paris Hilton in
February of 2005. Your sources should include at least the article that
month by Brian McWilliams in MacDev Center as well as the article
by Brian Krebs in the May 19, 2005, issue of The Washington Post ;
both articles are cited in the end-of-chapter notes. As these articles
contain contradictory information, presumably they should be taken
with a grain of salt. Nonetheless, are there any lessons you can draw,
both for designers of authentication systems and for users?

11.2 The website http:// www.sans.org contains a list of twenty “Critical

http://www.sans.org
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Security Controls.” How many of these correspond to the best prac-
tices listed in this chapter?

11.3 Research and write a paper about the role that Trojan horses report-
edly played in a 2004 unauthorized access to Cisco Systems and in a
2005 unauthorized access to LexisNexis’s Seisint unit. In the first, the
Trojan horse was reportedly a version of the ssh program, whereas
in the second, the Trojan horse reportedly masqueraded as a display
of nude photos of a teenage girl. Setting that difference aside, what
commonality and what other differences can you find in the way the
two attacks worked? What more general lessons for computer system
security can be gained from these two incidents?

11.4 Most UNIX and Linux systems include a program called sudo. Read
the documentation for it on your system or on the web at http:// www.
sudo.ws. Write a description of how this program’s design reflects
several of the principles explained in this chapter.

11.5 Check the websites of a variety of banks to see whether they have login
forms available through http (non-SSL) URLs, rather than only https
(SSL-encrypted) ones. Document your findings using screen captures.

11.6 Find several commercially available biometric systems. For each one,
indicate whether it provides identification or only authentication.

11.7 What is address space layout randomization and how does it help deter
stack smashing attacks?

11.8 Chelsea Manning has been convicted (under the name Bradley Man-
ning) of disclosing a large volume of classified information to Wik-
iLeaks. Write a paper that uses publicly available information about
this case to illustrate general security principles.

Notes

The single most important source of practical information about security is
http:// www.sans.org . There are also a number of good books on practical
security matters, such as those by Garfinkel, Spafford, and Schwartz [61];
Cheswick, Bellovin, and Rubin [33]; and Northcutt et al. [112]. For a broad
treatment of security, Anderson’s book [6] is highly regarded.

http://www.sudo.ws
http://www.sudo.ws
http://www.sans.org


11.8. KEY SECURITY BEST PRACTICES 503

Saltzer and Schroeder presented most of Section 11.2’s general security
principles in their 1975 tutorial paper [128]. That paper also described capa-
bilities and access control lists, along the lines of Chapter 7’s presentation.

Because one important class of security threats involves tricking legit-
imate users into cooperating with an adversary, Stajano and Wilson have
analyzed the methods that con artists use [139, 138].

One example of a system that generates multiple passwords from a single
master password was described by Ross et al. [124].

The Bell-LaPadula model was described by Bell and La Padula in a
series of MITRE Corporation technical reports in the early 1970s. Their best
summary is in a later “unified exposition,” which was also published only as a
technical report [14]. A more sophisticated, but less influential, information-
flow model was published by Dorothy Denning [43]. Both of these and other
formal models were surveyed by Landwehr [97]. The problem of covert
channels was described by Lampson [95]. Another important survey of the
state of security research in the highly-productive 1970s was published by
Dorothy and Peter Denning [44].

I mentioned that although most buffer-overflow attacks overwrite return
addresses, an attacker could instead arrange to overwrite some security-
critical variable, such as a Boolean flag used to control access. Chen et
al. [32] showed that such attacks are in fact realistic, even if not currently
popular. As defenses are put in place against current-generation stack-
smashing attacks, these alternate forms of attack are likely to gain in pop-
ularity.

Information about the Common Criteria is available from http:// www.
commoncriteriaportal.org . A good overview is in the introductory docu-
ment [144]. The specific ST that I use for illustration is the one for Windows
2000 [130]. It was also used by Shapiro to make similar points about the
importance of functional requirements [134].

Exploration Project 11.1 mentions a user authentication failure involv-
ing Paris Hilton. Many published accounts at the time included some in-
formation about the attack; the one specifically mentioned in the project
assignment is by McWilliams [106]. Information about the attack seems to
have shifted over time; the project assignment also mentions an article a few
months later by Krebs [93].

http://www.commoncriteriaportal.org
http://www.commoncriteriaportal.org
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Appendix A

Stacks

Most compilers for higher-level programming languages produce machine-
language object code that makes crucial use of a stack stored in the com-
puter’s memory. This stack is used to allocate space whenever a procedure
is called and then deallocate the space when the procedure returns. That
is, the space is associated with a particular activation of a procedure, and
as such, is called an activation record. For this reason, the stack is called
an activation record stack. Another name for the same stack is the runtime
stack, because it plays a central role in the runtime environment, which is to
say, the supporting structures the compiler expects to be present at the time
the object code is run. Even programs written in assembly language gener-
ally make use of an activation record stack, because assembly programmers
normally write their procedures following the same conventions as are used
by compilers.

You may have studied activation record stacks in a course on program-
ming languages, compilers, or computer organization; you may even have
learned something about them in an introductory computer science course.
If you have not previously studied this topic, this appendix should suffice.
For the purposes of understanding operating systems, you do not need to
know all the details of how activation records are used. However, you do
need some understanding of how the stack space is allocated in order to
understand Chapter 2’s explanation of thread switching and also as back-
ground for one of the security issues discussed in Chapter 11. Therefore,
in Section A.1, I provide an overview of what stack-allocated storage is,
and in Section A.2, I explain how this storage is represented using memory
and a register. Then, in Section A.3, I sketch how this is used to support
procedure activations.

505
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A.1 Stack-Allocated Storage: The Concept

Like most authors writing about computer systems, I use the word stack
to refer to stack-allocated storage, which is a generalization of the simpler
variety of stack used in the mathematical study of algorithms. I will first
describe the simpler kind of stack, and then I will explain how stack-allocated
storage goes beyond it.

The simple kind of stack is a modifiable object supporting two opera-
tions: push and pop. Each of these operations modifies the stack’s state,
which can be thought of as a sequence of values arranged in chronological
order according to when they were added to the stack. When a new stack
is created, it does not hold any values. The push operation adds one new
value as the most recent one. The pop operation removes the most recent
value and returns it. Because the pop operation changes the stack’s state,
the next pop will generally produce a different result. You can think of pop
as returning the most recently pushed value that has not yet been popped.
This value is said to be at the top of the stack. Note that it is illegal to pop
from an empty stack.

As an example of how this simple kind of stack operates, suppose a new
stack is created, and then the values 3 and 1 are pushed on it, in that order.
If a pop operation is done, the top element, 1, is returned. After this pop
operation, the 1 is no longer on the stack, and so a second pop would return
the 3 that is now on top. A third pop would be illegal, because the first two
pops leave the stack empty.

Stack-allocated storage provides a collection of memory locations that
can be individually loaded from or stored into, much like the elements of
an array. However, the collection of locations can expand and contract in a
stack-like fashion.

I can now explain the operations available on a stack, in the sense of a
stack-allocated storage structure. Each newly created stack starts with a
size of zero. That is, while the underlying representation may already be
occupying memory space, there are no memory locations valid for loading
and storing. The stack at this point is much like a zero-length array.

The size of the stack can be expanded using an allocate operation, which
takes a parameter specifying how many new memory locations should be
made available. The newly allocated memory locations are guaranteed to
be located at consecutive addresses, and the allocate operation returns the
smallest of these addresses. Thus, each location within the allocated block
of storage can be loaded or stored using an address calculated as some offset
from the base address returned by the allocation.
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The size of the stack can be decreased using a deallocate operation, again
with a parameter specifying the number of locations to be removed. Because
the storage is managed in a stack-like fashion, a deallocate operation frees
up the most recently allocated storage locations that have not already been
deallocated. Once storage locations are deallocated, it is illegal to use their
addresses for loading or storing.

Normally the size of each deallocation request matches the size of a cor-
responding allocation request. For example, one might allocate 16 locations,
allocate 48 more, deallocate the top 48, and finally deallocate the remaining
16. A single deallocation request can also combine the sizes from several
allocations. For instance, all 64 locations in the preceding example could
be deallocated at once. The only complicated kind of deallocation request
is one that frees up some, but not all, of a block of memory locations that
were allocated together. In that case, the stack implementation needs to
specify which locations in the partially deallocated block remain valid. I
will not pursue this issue further, as it isn’t relevant to the matters at hand.
Instead, I will turn to the realities of how stacks are represented within
computer hardware.

A.2 Representing a Stack in Memory

The standard representation of a stack is a large region of consecutive mem-
ory locations together with a stack pointer register that indicates how many
of the locations are in use. The size of the region is chosen to be large
enough that the stack normally will not overflow it. The virtual memory
system (described in Chapter 6) can enforce this limit and can also expand
the size of the region if necessary, provided the adjoining addresses are not
in use for another purpose.

The allocated locations within the stack are all at one end of the re-
gion of memory. One possibility is that the allocated locations occupy the
lowest addresses in the region and that each allocation request expands the
stack upward into the higher addresses. The other possibility is that the
allocated locations occupy the highest addresses in the region and that allo-
cation requests expand the stack downward into lower addresses. The latter
arrangement is the more common in practice, and so I will assume it for the
remainder of my explanation.

The stack pointer register indicates how much of the memory region
is in use. It does this not by containing a count of how many locations
are currently allocated, but by holding the address of the most recently
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allocated location. This location is conceptually the “top” of the stack,
though because the stack grows downward, the word “top” is misleading.
The stack pointer contains the numerically smallest memory address of any
currently allocated location. Figure A.1 shows a stack after allocating 16
locations and then 48; the stack pointer contains the 64th largest memory
address in the region. (In some architectures, the stack pointer points to
the free memory location that would be the next one allocated, rather than
to the most recently allocated location. This would move the pointer one
location lower, but does not make any significant difference for the purposes
of this book.)

Given this representation, an allocate operation decreases the stack pointer
by the number of locations requested and returns the new stack pointer value
as the base address of the allocated block. A deallocate operation increases
the stack pointer by the number of locations to be freed. For example, deal-
locating 48 locations in Figure A.1 would leave the stack pointer pointing
at the lowest-numbered address of the 16 locations in the remaining block
of storage.

At this point, you should understand the basic management of stack
space, but not the purpose to which that space is put. Therefore, I will pro-
vide a brief synopsis of how programming-language implementations make
use of stack space.

A.3 Using a Stack for Procedure Activations

When one procedure calls another, the caller executes an instruction that
jumps to the beginning of the called procedure. That instruction also stores
a return address, which is the address of the calling procedure’s next instruc-
tion after the procedure call. That way, when the called procedure is ready
to return, it can jump to the return address and thereby resume execution
of the calling procedure.

Computer architectures differ in where they store the return address.
One approach is for the procedure call instruction to push the return address
on the stack. This approach is used in the popular IA-32 architecture, which
is also known as the x86 architecture, and is implemented by processors such
as those in the Pentium family. Thus, the very first element of a procedure
activation record may be the return address, pushed by the procedure call
instruction itself.

In other architectures, such as MIPS, the procedure call instruction
places the return address in a register. If the called procedure does not
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Stack pointer

16-location
block

48-location
block

Free space

Figure A.1: A stack grows downward, occupying the highest addresses in
the region used to store it. The stack pointer points at the “top” of the
stack, that is, the most recently allocated block of space. In this example,
blocks of size 16 and 48 were allocated, so the stack pointer points at the
64th location from the end of the memory region.

execute any further procedure calls before it returns, the return address can
remain in the register. The return instruction jumps to the address stored
in the register. In this case, where there are no further procedure calls, the
procedure activation is termed a leaf.

However, this register-based approach to return addresses does not di-
rectly support nesting of procedure activations, with the called procedure
in turn calling a third procedure, which may call a fourth, and so on. To
support that nesting, a whole chain of return addresses is needed; the inner-
most procedure activation must be able to return to its caller, which in turn
must be able to return to its caller, and so forth. One register cannot hold
all these return addresses simultaneously. Therefore, any nonleaf procedure
activation must store the return address register’s value into the activation
record and later retrieve it from there. As a result, the activation records
hold return addresses, even on architectures that don’t directly push the
return address onto the stack in the first place.

Each procedure activation also needs some storage space for local vari-
ables and other values that arise in the course of the procedure’s compu-
tation. Some of this storage may be in registers rather than in memory.
When one procedure calls another, there must be some agreement regarding
how they will share the registers. Typically the agreement specifies that the
called procedure must leave some registers the way it found them, that is,
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containing the same values at procedure return as at procedure entry. The
calling procedure can leave its values in these registers when it executes the
procedure call. Other registers can be freely modified by the called proce-
dure; the calling procedure must not leave any important values in them.

Either kind of register is likely to be saved into the stack. If the called
procedure promises to leave a register as it found it, but wants to use that
register for its own storage, it will reconcile this conflict by saving the register
to the stack before modifying it and then restoring the saved value before
returning. Thus, the caller will never know that the register was temporarily
modified. This approach is known as callee saves, because the callee saves
the register into its activation record.

For registers that the callee may overwrite without compunction, the
situation is somewhat different. For these registers, it is the caller that
may want to save them into its own activation record. The caller saves
the registers before the procedure call and restores them upon resumption.
Therefore, this approach is known as caller saves.

Each architecture has some convention for which registers are preserved
using the caller-saves approach and which using the callee-saves approach.
That way, any two procedures will correctly interoperate. The details don’t
matter for the purposes of this book; what matters is that activation records
hold saved registers. As such, the stack is also a natural place for saving
registers upon thread switching, as described in Chapter 2.

Some values local to a procedure activation cannot be stored in registers.
For example, suppose that a procedure makes use of a local array, which is
allocated when the procedure is entered and deallocated when the procedure
returns. This array will be stored in memory so that the array elements can
be accessed with load and store instructions. Because the lifetime of the
array corresponds with a procedure activation, the array will be part of the
activation record. In Chapter 11, I explain that this can create a security
risk if input is read into the array without checking the amount of input
versus the array size. As I explain there, if the input runs past the end of
the array, it can overwrite other parts of the procedure’s activation record,
or the activation records of the caller, the caller’s caller, and so forth, with
potentially dangerous results.
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