\ N\ :\3.‘ ' l‘
NN Y
Operatlng Systems a d M,;ddleware "

4!

\»m‘

R
N ‘\4\3) ‘A‘
- Max Hailperin ‘\ \&,;‘.‘.A . - <<

Cusﬁavus Adolphus College ¢ \\

Ny

Revised Edition 1.3.1
June 4, 2019

Copyright (©) 2011-2019 by Max Hailperin.

This work is licensed under the Creative Commons Attribution-ShareAlike
3.0 Unported License. To view a copy of this license, visit

http: // creativecommons.org/ licenses/ by-sa/ 3.0/

or send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA.

About the Cover

The cover photo shows the treasury coming into view at the end of the siq, or
defile, leading to the ancient Nabatean city of Petra in present-day Jordan.
The siq is a narrow, winding passage cut deep into the sandstone primarily
by natural geological forces, though it was improved by the Nabateans.

Petra was a thriving spice trading city. Its prosperity can be linked to
several factors, including its location on important trade routes, its access to
water through sophisticated hydraulic engineering, and its easily defensible
character. The siq played an important role in the latter two aspects. Water
conduits were built into the walls of the siq. Meanwhile, the floor of the siq
was just wide enough for a single-file merchant caravan of camels, while
remaining too narrow to serve as a route for attack.

Operating systems and middleware provide a conducive environment for
application programs to interact in a controlled manner, much as Petra must
have served for spice merchants 2000 years ago. Access to communication
and resources remain as important as then, but so does the provision of
tightly controlled interfaces that ensure security.

The photo is by Rhys Davenport, who released it under a |Creative Com-
mons Attribution 2.0 Generic licensel. The photo is available on the web at

hitp: // www.flickr.com/ photos/ 33122834 QN06/ 3437495101/

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.flickr.com/photos/33122834@N06/3437495101/

To my family

iv

Contents

[Prefacel

1__Introductionl
[1.1 Chapter Overview|
1.2 What Is an Operating System?|
(.3 What Is Middleware?]
1.4 Objectives tor the Book|
[1.5 Multiple Computations on One Computer|
[1.6 Interactions Between Computations|
1.7 Supporting Interaction Across Time|
1.8 Supporting Interaction Across Space|

..............................
2_Threads

2.2 Example of Multithreaded Programs|
[2.3 Reasons for Using Concurrent Threads|
2.4 Switching Between Threads|
2.5 Preemptive Multitasking|.
[2.6 Security and Threads|. L.

|3 Scheduling|

[3.3 Scheduling Goals|
3.3.1 Throughput|.
3.3.2 Response Time|
13.3.3 Urgency, Importance, and Resource Allocation|
[3.4 Fixed-Priority Scheduling|

vi CONTENTS
[3.5 Dynamic-Priority Schedulingl 65
[3.5.1 Earliest Deadline First Schedulingl 65
[3.5.2 Decay Usage Scheduling| 66

3.6 Proportional-Share Schedulingl 71
[3.7 Security and Scheduling| 79
|4 Synchronization and Deadlocks| 93
41 Introductionl. oo 93
4.2 Races and the Need for Mutual Exclusion| 95
4.3 Mutexes and Monitorslo 98
4.3.1 The Mutex Application Programming Interface| 99
4.3.2 Monitors: A More Structured Interface to Mutexes . . 103
|4.3.3 Underlying Mechanisms for Mutexes| 106

4.4 Other Synchronization Patterns|. 110
4.4.1 Bounded Buffers| 113
[4.4.2 Readers/Writers Locks|. 115
443 Barrierslo 116

4.5 Condition Variablesl 117
4.6 Semaphores| L 123
BT Deadlockl o o o 124
[4.7.1 The Deadlock Problem|. 126
|4.7.2 Deadlock Prevention Through Resource Ordering|. . . 128
4.7.3 Ex Post Facto Deadlock Detectionl 130

4. 7.4 Immediate Deadlock Detection| 132

[4.8 Synchronization/Scheduling Interactions| 135
4.8.1 Priority Inversion|. L. 135
4.8.2 The Convoy Phenomenon| 137

4.9 Nonblocking Synchronization| 141
[4.10 Security and Synchronization| 145
6__Atomic Transactions| 161
b1 Introductionl.o 161
5.2 Example Applications of Transactions| 164
[p.2.1 Database Systems| 165
[5.2.2 Message-Queuing Systems| 169
[5.2.3 Journaled File Systems| 174

5.3 Mechanisms to Ensure Atomicity| 176
[5.3.1 Serializability: T'wo-Phase Locking 176
[5.3.2 Failure Atomicity: Undo Logging|{ 185

[5.4 Transaction Durability: Write-Ahead Logging| 188

CONTENTS vii

[b.5 Additional Transaction Mechanismsl 192
5.5.1 Increased Transaction Concurrency: Reduced Isolation| 193
[5.5.2 Coordinated [ransaction Participants: Two-Phase Com- |

| mitl. . ..o 195
[5.6 Security and Transactions| 198

6 Virtual Memory| 209
6.1 Introduction|. oo 209
6.2 Uses for Virtual Memory|. 214
6.2.1 Private Storage| L. 214

[6.2.2 Controlled Sharing| 215

6.2.3 Flexible Memory Allocation| 218

6.2.4 Sparse Address Spaces| 220

625 Persistencel o 0oL 222

6.2.6 Demand-Driven Program Loadingl 223

6.2.7 Efficient Zero Filling| 224

[6.2.8 Substituting Disk Storage for RAM| 225

6.3 Mechanisms for Virtual Memory| 226
[6.3.1 Software/Hardware Interface] 228

[6.3.2 Linear Page Tables|. 232

6.3.3 Multilevel Page Tables| 237

6.3.4 Hashed Page Tables] 242

[6.3.5 Segmentation|o 245

|6.4 Policies for Virtual Memory| 250
[6.4.1 Fetch Policy|. 251

6.4.2 Placement Policy| 253

[6.4.3 Replacement Policy| 254

6.5 Security and Virtual Memory| 262
[l__Processes and Protectionl 273
[r.1 Introduction|. 273
7.2 POSIX Process Management APIl. 275
(.3 Protecting Memory|. 285

[r.3.1 The Foundation of Protection: Two Processor Modesl 286
[7.3.2 'The Mainstream: Multiple Address Space Systems| . . 289

[7.3.3 An Alternative: Single Address Space Systems| 291
7.4 Representing Access Rights| 293
[7.4.1 Fundamentals of Access Rights| 293
[7.4.2 Capabilities 299

viii CONTENTS

(2.5 _Alternative Granularities of Protectionl 311
[(.5.1 Protection Within a Process/. 312
[7.5.2 Protection of Fntire Simulated Machines|. 313

7.6 Security and Protection| 317

I8 Files and Other Persistent Storage| 333
i 333
336

8.3 POSIX File API 340
[8.3.1 File Descriptors|. 340
[8.3.2 Mapping Files into Virtual Memory| 345
18.3.3 Reading and Writing Files at Specified Positions| . . . 348
[8.3.4 Sequential Reading and Writingl 348

[8.4 Disk Space Allocation| 350
[8.4.1 Fragmentation| 351
8.4.2 Locality] oo 354
8.4.3 Allocation Policies and Mechanismd 356

85 Metadatal 358
[8.5.1 Data Location Metadatal. 359
[8.5.2 Access Control Metadatal 368
[8.5.3 Other Metadatal 371

[8.6 Directories and Indexing| 371
8.6.1 File Directories Versus Database Indexes|. 371
[8.6.2 Using Indexes to Locate Files| 373
[8.6.3 File Linking| 0. 374
[8.6.4 Directory and Index Data Structures|. 378

[8.7 Metadata Integrity| 379

[8.8 Polymorphism in File System Implementations] 383

[8.9 Security and Persistent Storage|o 384

9 Networking| 395

9.1 Introductionl. oo 395
9.1.1 Networks and Internetsl 396
9.1.2 Protocol Layers|. 398
9.1.3 The End-to-End Principle 401
[9.1.4 The Networking Roles of Operating Systems, Middle- |

| ware, and Application Software| 402

9.2 The Application Layer| 403

9.2.1 The Web as a Typical Examplel 403

CONTENTS ix
[9.2.2 The Domain Name System: Application Layer as In- |

| frastructurelo Lo 406
[9.2.3 Distributed File Systems: An Application Viewed Through |

| Operating Systems| 409
[9.3 The Transport Layer| 411
9.3.1 Socket APISl. L. 412

9.3.2 TCP, the Dominant Transport Protocol| 418

9.3.3 Evolution Within and Beyond TCP| 421

9.4 The Network Layer|. 422
9.4.1 IP, Versions 4 and 6] 422

9.4.2 Routing and Label Switching| 425

0.4.3 Network Address Translation: An Fnd to End-to-End?426

9.5 'The Link and Physical Layers| 429
9.6 Network Security| L. 431
9.6.1 Security and the Protocol Layers| 432

[9.6.2 Firewalls and Intrusion Detection Systems|. 434

9.6.3 Cryptography|., 435

[LO Messaging, RPC, and Web Services| 447
0.1 Introduction|.o 447
[10.2 Messaging Systems| oL 448
10.3 Remote Procedure Calll 451
[10.3.1 Principles of Operation for RPC| 452

[10.3.2 An Example Using Java RMI| 455

10.4 Web Services 461
[10.5 Security and Communication Middleware] 461
467
[01.1 Introduction|. 467
[11.2 Security Objectives and Principles| 468
[I1.3 User Authentication| 474
[11.3.1 Password Capture Using Spoofing and Phishingl. . . . 475

[11.3.2 Checking Passwords Without Storing Them|. 477

[11.3.3 Passwords for Multiple, Independent Systems| 477

[11.3.4 Two-Factor Authentication| 477

11.4 Access and Information-Flow Controlsl 480
[11.5 Viruses and Worms|. 485
[11.6 Security Assurance| 489
[11.7 Security Monitoring], 491
[11.8 Key Security Best Practices| 494

CONTENTS

X
[A_Stacks| 505
|A.1 Stack-Allocated Storage: The Concept| 506
|[A.2 Representing a Stack in Memory| 507
IA.3 Using a Stack for Procedure Activations| 508
[Bibliography| 511

Mndex 527

Preface

Suppose you sit down at your computer to check your email. One of the
messages includes an attached document, which you are to edit. You click
the attachment, and it opens up in another window. After you start edit-
ing the document, you realize you need to leave for a trip. You save the
document in its partially edited state and shut down the computer to save
energy while you are gone. Upon returning, you boot the computer back
up, open the document, and continue editing.

This scenario illustrates that computations interact. In fact, it demon-
strates at least three kinds of interactions between computations. In each
case, one computation provides data to another. First, your email program
retrieves new mail from the server, using the Internet to bridge space. Sec-
ond, your email program provides the attachment to the word processor,
using the operating system’s services to couple the two application pro-
grams. Third, the invocation of the word processor that is running before
your trip provides the partially edited document to the invocation running
after your return, using disk storage to bridge time.

In this book, you will learn about all three kinds of interaction. In all
three cases, interesting software techniques are needed in order to bring the
computations into contact, yet keep them sufficiently at arm’s length that
they don’t compromise each other’s reliability. The exciting challenge, then,
is supporting controlled interaction. This includes support for computations
that share a single computer and interact with one another, as your email
and word processing programs do. It also includes support for data storage
and network communication. This book describes how all these kinds of
support are provided both by operating systems and by additional software
layered on top of operating systems, which is known as middleware.

xi

xii PREFACE

Audience

If you are an upper-level computer science student who wants to under-
stand how contemporary operating systems and middleware products work
and why they work that way, this book is for you. In this book, you will
find many forms of balance. The high-level application programmer’s view,
focused on the services that system software provides, is balanced with a
lower-level perspective, focused on the mechanisms used to provide those
services. Timeless concepts are balanced with concrete examples of how
those concepts are embodied in a range of currently popular systems. Pro-
gramming is balanced with other intellectual activities, such as the scientific
measurement of system performance and the strategic consideration of sys-
tem security in its human and business context. Even the programming
languages used for examples are balanced, with some examples in Java and
others in C or C++. (Only limited portions of these languages are used,
however, so that the examples can serve as learning opportunities, not stum-
bling blocks.)

Systems Used as Examples

Most of the examples throughout the book are drawn from the two dominant
families of operating systems: Microsoft Windows and the UNIX family,
including especially Linux and Mac OS X. Using this range of systems pro-
motes the students’ flexibility. It also allows a more comprehensive array of
concepts to be concretely illustrated, as the systems embody fundamentally
different approaches to some problems, such as the scheduling of processors’
time and the tracking of files’ disk space.

Most of the examples are drawn from the stable core portions of the
operating systems and, as such, are equally applicable to a range of spe-
cific versions. Whenever Microsoft Windows is mentioned without further
specification, the material should apply to Windows NT, Windows 2000,
Windows XP, Windows Server 2003, Windows Vista, Windows 2008, Win-
dows 7, Windows 8, Windows 2012, and Windows 10. All Linux examples
are from version 2.6, though much of the material applies to other versions
as well. Wherever actual Linux source code is shown (or whenever fine de-
tails matter for other reasons), the specific subversion of 2.6 is mentioned
in the end-of-chapter notes. Most of the Mac OS X examples originated
with version 10.4, also known as Tiger, but should be applicable to other
versions.

PREFACE xiii

Where the book discusses the protection of each process’s memory, one
additional operating system is brought into the mix of examples, in order
to illustrate a more comprehensive range of alternative designs. The IBM
iSeries, formerly known as the AS/400, embodies an interesting approach
to protection that might see wider application within current students’ life-
times. Rather than giving each process its own address space (as Linux,
Windows, and Mac OS X do), the iSeries allows all processes to share a
single address space and to hold varying access permissions to individual
objects within that space.

Several middleware systems are used for examples as well. The Ora-
cle database system is used to illustrate deadlock detection and recovery
as well as the use of atomic transactions. Messaging systems appear both
as another application of atomic transactions and as an important form of
communication middleware, supporting distributed applications. The spe-
cific messaging examples are drawn from the IBM WebSphere MQ system
(formerly MQSeries) and the Java Message Service (JMS) interface, which
is part of Java 2 Enterprise Edition (J2EE). The other communication mid-
dleware example is Java RMI (Remote Method Invocation).

Organization of the Text

Chapter [1] provides an overview of the text as a whole, explaining what an
operating system is, what middleware is, and what sorts of support these
systems provide for controlled interaction.

The next nine chapters work through the varieties of controlled interac-
tion that are exemplified by the scenario at the beginning of the preface: in-
teraction between concurrent computations on the same system (as between
your email program and your word processor), interaction across time (as
between your word processor before your trip and your word processor after
your trip), and interaction across space (as between your email program and
your service provider’s email server).

The first of these three topics is controlled interaction between computa-
tions operating at one time on a particular computer. Before such interaction
can make sense, you need to understand how it is that a single computer
can be running more than one program, such as an email program in one
window and a word processing program in another. Therefore, Chapter
explains the fundamental mechanism for dividing a computer’s attention
between concurrent computations, known as threads. Chapter [3| continues
with the related topic of scheduling. That is, if the computer is dividing its

xiv PREFACE

time between computations, it needs to decide which ones to work on at any
moment.

With concurrent computations explained, Chapter [4] introduces con-
trolled interactions between them by explaining synchronization, which is
control over the threads’ relative timing. For example, this chapter explains
how, when your email program sends a document to your word processor,
the word processor can be constrained to read the document only after the
email program writes it. One particularly important form of synchroniza-
tion, atomic transactions, is the topic of Chapter Atomic transactions
are groups of operations that take place as an indivisible unit; they are
most commonly supported by middleware, though they are also playing an
increasing role in operating systems.

Other than synchronization, the main way that operating systems con-
trol the interaction between computations is by controlling their access to
memory. Chapter [explains how this is achieved using the technique known
as virtual memory. That chapter also explains the many other objectives
this same technique can serve. Virtual memory serves as the foundation for
Chapter [7s topic, which is processes. A process is the fundamental unit of
computation for protected access, just as a thread is the fundamental unit
of computation for concurrency. A process is a group of threads that share a
protection environment; in particular, they share the same access to virtual
memory.

The next three chapters move outside the limitations of a single com-
puter operating in a single session. First, consider the document stored
before a trip and available again after it. Chapter [§| explains persistent
storage mechanisms, focusing particularly on the file storage that operat-
ing systems provide. Second, consider the interaction between your email
program and your service provider’s email server. Chapter [9] provides an
overview of networking, including the services that operating systems make
available to programs such as the email client and server. Chapter [I0] ex-
tends this discussion into the more sophisticated forms of support provided
by communication middleware, such as messaging systems, RMI, and web
services.

Finally, Chapter [11| focuses on security. Because security is a pervasive
issue, the preceding ten chapters all provide some information on it as well.
Specifically, the final section of each chapter points out ways in which se-
curity relates to that chapter’s particular topic. However, even with that
coverage distributed throughout the book, a chapter specifically on security
is needed, primarily to elevate it out of technical particulars and talk about
general principles and the human and organizational context surrounding

PREFACE XV

the computer technology.

The best way to use these chapters is in consecutive order. However,
Chapter [5] can be omitted with only minor harm to Chapters 8] and [10}, and
Chapter [9] can be omitted if students are already sufficiently familiar with
networking.

Relationship to Computer Science Curriculum 2008

Operating systems are traditionally the subject of a course required for all
computer science majors. In recent years, however, there has been increasing
interest in the idea that upper-level courses should be centered less around
particular artifacts, such as operating systems, and more around cross-
cutting concepts. In particular, the Computing Curricula 2001 (CC2001)
and its interim revision, Computer Science Curriculum 2008 (CS2008), pro-
vide encouragement for this approach, at least as one option. Most colleges
and universities still retain a relatively traditional operating systems course,
however. Therefore, this book steers a middle course, moving in the direc-
tion of the cross-cutting concerns while retaining enough familiarity to be
broadly adoptable.

The following table indicates the placement within this text of knowledge
units from CS2008’s computer science body of knowledge. Those knowledge
units designated as core units within CS2008 are listed in italics. The book
covers all core operating systems (OS) units, as well as one elective OS unit.
The overall amount of coverage for each unit is always at least that rec-
ommended by CS2008, though sometimes the specific subtopics don’t quite
correspond exactly. Outside the OS area, this book’s most substantial cov-
erage is of Net-Centric Computing (NC); another major topic, transaction
processing, comes from Information Management (IM). In each row, the
listed chapters contain the bulk of the knowledge unit’s coverage, though

xvi PREFACE

some topics may be elsewhere.

Knowledge unit
(italic indicates core units in CS2008) Chapter(s)
0S/OverviewOfOperatingSystems
0S/OperatingSystemPrinciples
0S/Concurrency

0S/SchedulingAndDispatch
0S/MemoryManagement
0S/SecurityAndProtection

OS/FileSystems

NC/Introduction

NC/NetworkCommunication (partial coverage)
NC/NetworkSecurity (partial coverage)
NC/WebOrganization (partial coverage)
NC/Networked Applications (partial coverage)
IM/TransactionProcessing

N=lojofolofcof o eofof ==

Your Feedback Is Welcome

Comments, suggestions, and bug reports are welcome; please send email to
maxQ@gustavus.edu or use the github issue tracker. Bug reports can earn
you a bounty of $2.56 apiece as a token of gratitude. (The great computer
scientist Donald Knuth started this tradition. Given how close to bug-free
his publications have become, it seems to work.) For purposes of this reward,
the definition of a bug is simple: if as a result of your comment the author
chooses to make a change, then you have pointed out a bug. The change
need not be the one you suggested, and the bug need not be technical in
nature. Unclear writing qualifies, for example.

Features of the Text

Each chapter concludes with five standard elements. The last numbered sec-
tion within the chapter is always devoted to security matters related to the
chapter’s topic. Next comes three different lists of opportunities for active
participation by the student: exercises, programming projects, and explo-
ration projects. Finally, the chapter ends with historical and bibliographic
notes.

The distinction between exercises, programming projects, and explo-
ration projects needs explanation. An exercise can be completed with no

PREFACE xvii

outside resources beyond paper and pencil: you need just this textbook and
your mind. That does not mean all the exercises are cut and dried, however.
Some may call upon you to think creatively; for these, no one answer is cor-
rect. Programming projects require a nontrivial amount of programming;
that is, they require more than making a small, easily identified change in
an existing program. However, a programming project may involve other
activities beyond programming. Several of them involve scientific measure-
ment of performance effects, for example; these exploratory aspects may
even dominate over the programming aspects. An exploration project, on
the other hand, can be an experiment that can be performed with no real
programming; at most you might change a designated line within an ex-
isting program. The category of exploration projects does not just include
experimental work, however. It also includes projects that require you to do
research on the Internet or using other library resources.

Supplemental Resources

The author of this text is making supplemental resources available on his own
website. Additionally, the publisher of the earlier first edition commissioned
additional resources from independent supplement authors, which may still
be available through the publisher’s website and would largely still apply
to this revised edition. The author’s website, https: // gustavus.edu/ +mazx/
0s-book/, contains at least the following materials:

e Full text of this revised edition

e Source code in Java, C, or C++ for all programs that are shown in
the text

e Artwork files for all figures in the text

e A link to the book’s github site, which includes an issue tracker (errata
list)

About the Revised Edition

Course Technology published the first edition of this book in January of 2006
and in October of 2010 assigned the copyright back to the author, giving
him the opportunity to make it freely available. This revised edition closely
follows the first edition; rather than being a thorough update, it is aimed at
three narrow goals:

https://gustavus.edu/+max/os-book/
https://gustavus.edu/+max/os-book/

xviii PREFACE

All errata reported in the first edition are corrected.

A variety of other minor improvements appear throughout, such as
clarified explanations and additional exercises, projects, and end-of-
chapter notes.

e Two focused areas received more substantial updates:

— The explanation of Linux’s scheduler was completely replaced
to correspond to the newer “Completely Fair Scheduler” (CFS),
including its group scheduling feature.

— A new section, was added on nonblocking synchronization.

In focusing on these limited goals, a key objective was to maintain as
much compatibility with the first edition as possible. Although page num-
bering changed, most other numbers stayed the same. All new exercises
and projects were added to the end of the corresponding lists for that rea-
son. The only newly added section, [4.9], is near the end of its chapter; thus,
the only changed section number is that the old Section 4.9 (“Security and
Synchronization”) became Only in Chapter |4 did any figure numbers
change.

It is my hope that others will join me in making further updates and
improvements to the text. I am releasing it under a Creative Commons
license that allows not just free copying, but also the freedom to make mod-
ifications, so long as the modified version is released under the same terms.
In order to make such modifications practical, I'm not just releasing the
book in PDF form, but also as a collection of IXTEX source files that can
be edited and then run through the pdflatex program (along with bibtex
and makeindex). The source file collection also includes PDF files of all
artwork figures; Course Technology has released the rights to the artwork
they contracted to have redrawn. All of this is on the github site.

If you produce a modified version of this text, the Creative Commons
license allows you considerable flexibility in how you make your modified
version available. I would urge you to contribute it back using a “pull
request” on the main github site—we will all benefit from having a central
repository of progress. Separate materials to supplement the text would also
be welcome. One category that occurs to me is animations or screencasts;
the static figures in the text are rather limited. Another worthwhile project
would be to transform the text into a more contribution-friendly form, such
as a wiki.

PREFACE xix

Acknowledgments

This book was made possible by financial and logistical support from my
employer, Gustavus Adolphus College, and moral support from my family.
I would like to acknowledge the contributions of the publishing team, espe-
cially developmental editor Jill Batistick and Product Manager Alyssa Pratt.
I am also grateful to my students for doing their own fair share of teaching.
I particularly appreciate the often extensive comments I received from the
following individuals, each of whom reviewed one or more chapters: Dan
Cosley, University of Minnesota, Twin Cities; Allen Downey, Franklin W.
Olin College of Engineering; Michael Goldweber, Xavier University; Ramesh
Karne, Towson University; G. Manimaran, Iowa State University; Alexander
Manov, Illinois Institute of Technology; Peter Reiher, University of Califor-
nia, Los Angeles; Rich Salz, DataPower Technology; Dave Schulz, Wisconsin
Lutheran College; Sanjeev Setia, George Mason University; and Jon Weiss-
man, University of Minnesota, Twin Cities. Although I did not adopt all
their suggestions, I did not ignore any of them, and I appreciate them all.

In preparing the revised edition, I took advantage of suggestions from
many readers. I would like to thank all of them, even those I've managed
to lose track of, to whom I also apologize. Those I can thank by name are
Joel Adams, Michael Brackney, Jack Briner, Justin Delegard, Ben Follis,
MinChan Kim, Finn Kuusisto, Matt Lindner, Milo Martin, Gabe Schmidt,
Fritz Sieker, and Alex Wauck.

Since the initial release of the revised edition, user suggestions have
continued to drive most of the progress. The github issue tracker and pull
requests show the history of these valuable contributions.

XX

PREFACE

Chapter 1

Introduction

1.1 Chapter Overview

This book covers a lot of ground. In it, I will explain to you the basic
principles that underlie a broad range of systems and also give you concrete
examples of how those principles play out in several specific systems. You
will see not only some of the internal workings of low-level infrastructure,
but also how to build higher-level applications on top of that infrastructure
to make use of its services. Moreover, this book will draw on material you
may have encountered in other branches of computer science and engineer-
ing and engage you in activities ranging from mathematical proofs to the
experimental measurement of real-world performance and the consideration
of how systems are used and abused in social context.

Because the book as a whole covers so much ground, this chapter is
designed to give you a quick view of the whole terrain, so that you know
what you are getting into. This is especially important because several of
the topics I cover are interrelated, so that even though I carefully designed
the order of presentation, I am still going to confront you with occasional
forward references. You will find, however, that this introductory chapter
gives you a sufficient overview of all the topics so that you won’t be mystified
when a chapter on one makes some reference to another.

In Section I will explain what an operating system is, and in Sec-
tion I will do the same for middleware. After these two sections, you
will know what general topic you are studying. Section gives you some
reasons for studying that topic, by explaining several roles that I hope this
book will serve for you.

After the very broad overview provided by these initial sections, the

2 CHAPTER 1. INTRODUCTION

remaining sections of this chapter are somewhat more focused. Each corre-
sponds to one or more of the later chapters and explains one important cat-
egory of service provided by operating systems and middleware. Section [L.5
explains how a single computer can run several computations concurrently,
a topic addressed in more depth by Chapters [2| and 3| Section explains
how interactions between those concurrent computations can be kept under
control, the topic of Chapters [through Sections and extend
the range of interacting computations across time and space, respectively,
through mechanisms such as file systems and networking. They preview
Chapter [§ and Chapters [J] and [I0] Finally, Section [I.9] introduces the topic
of security, a topic I revisit at the end of each chapter and then focus on in

Chapter

1.2 What Is an Operating System?

An operating system is software that uses the hardware resources of a com-
puter system to provide support for the execution of other software. Specif-
ically, an operating system provides the following services:

e The operating system allows multiple computations to take place con-
currently on a single computer system. It divides the hardware’s time
between the computations and handles the shifts of focus between the
computations, keeping track of where each one leaves off so that it can
later correctly resume.

e The operating system controls the interactions between the concurrent
computations. It can enforce rules, such as forbidding computations
from modifying data structures while other computations are accessing
those structures. It can also provide isolated areas of memory for
private use by the different computations.

e The operating system can provide support for controlled interaction of
computations even when they do not run concurrently. In particular,
general-purpose operating systems provide file systems, which allow
computations to read data from files written by earlier computations.
This feature is optional because an embedded system, such as the
computer controlling a washing machine, might in some cases run an
operating system, but not provide a file system or other long-term
storage.

1.2. WHAT IS AN OPERATING SYSTEM? 3

e The operating system can provide support for controlled interaction
of computations spread among different computer systems by using
networking. This is another standard feature of general-purpose oper-
ating systems.

These services are illustrated in Figure

If you have programmed only general-purpose computers, such as PCs,
workstations, and servers, you have probably never encountered a computer
system that was not running an operating system or that did not allow mul-
tiple computations to be ongoing. For example, when you boot up your own
computer, chances are it runs Linux, Microsoft Windows, or Mac OS X and
that you can run multiple application programs in individual windows on
the display screen. These three operating systems will serve as my primary
examples throughout the book.

To illustrate that a computer can run a single program without an op-
erating system, consider embedded systems. A typical embedded system
might have neither keyboard nor display screen. Instead, it might have
temperature and pressure sensors and an output that controls the fuel in-
jectors of your car. Alternatively, it might have a primitive keyboard and
display, as on a microwave oven, but still be dedicated to running a single
program.

Some of the most sophisticated embedded systems run multiple cooper-
ating programs and use operating systems. However, more mundane embed-
ded systems take a simpler form. A single program is directly executed by
the embedded processor. That program contains instructions to read from
input sensors, carry out appropriate computations, and write to the output
devices. This sort of embedded system illustrates what is possible without
an operating system. It will also serve as a point of reference as I contrast
my definition of an operating system with an alternative definition.

One popular alternative definition of an operating system is that it pro-
vides application programmers with an abstract view of the underlying hard-
ware resources, taking care of the low-level details so that the applications
can be programmed more simply. For example, the programmer can write
a simple statement to output a string without concern for the details of
making each character appear on the display screen.

I would counter by remarking that abstraction can be provided with-
out an operating system, by linking application programs with separately
written libraries of supporting procedures. For example, a program could
output a string using the standard mechanism of a programming language,
such as C++ or Java. The application programmer would not need to know

4 CHAPTER 1. INTRODUCTION

networking
| Application | Application

Application | Operating System | | Operating System |
3 B 3

| Application |

L

=77 =77
G| S Ci—— |

(a) (b)

Figure 1.1: Without an operating system, a computer can directly execute
a single program, as shown in part (a). Part (b) shows that with an oper-
ating system, the computer can support concurrent computations, control
the interactions between them (suggested by the dashed line), and allow
communication across time and space by way of files and networking.

anything about hardware. However, rather than running on an operating
system, the program could be linked together with a library that performed
the output by appropriately manipulating a microwave oven’s display panel.
Once running on the oven’s embedded processor, the library and the appli-
cation code would be a single program, nothing more than a sequence of
instructions to directly execute. However, from the application program-
mer’s standpoint, the low-level details would have been successfully hidden.

To summarize this argument, a library of input/output routines is not
the same as an operating system, because it satisfies only the first part of
my definition. It does use underlying hardware to support the execution of
other software. However, it does not provide support for controlled inter-
action between computations. In fairness to the alternative viewpoint, it is
the more historically grounded one. Originally, a piece of software could be
called an operating system without supporting controlled interaction. How-
ever, the language has evolved such that my definition more closely reflects
current usage.

I should also address one other alternative view of operating systems,
because it is likely to be the view you have formed from your own experience
using general-purpose computers. You are likely to think of an operating
system as the software with which you interact in order to carry out tasks
such as running application programs. Depending on the user interface to
which you are accustomed, you might think the operating system is what
allows you to click program icons to run them, or you might think the
operating system is what interprets commands you type.

1.2. WHAT IS AN OPERATING SYSTEM?)

There is an element of truth to this perception. The operating system
does provide the service of executing a selected application program. How-
ever, the operating system provides this service not to human users clicking
icons or typing commands, but to other programs already running on the
computer, including the one that handles icon clicks or command entries.
The operating system allows one program that is running to start another
program running. This is just one of the many services the operating system
provides to running programs. Another example service is writing output
into a file. The sum total of features the operating system makes available
for application programmers to use in their programs is called the Applica-
tion Programming Interface (API). One element of the API is the ability to
run other programs.

The reason why you can click a program icon or type in a command
to run a program is that general-purpose operating systems come bundled
with a user-interface program, which uses the operating system API to run
other programs in response to mouse or keyboard input. At a marketing
level, this user-interface program may be treated as a part of the operating
system; it may not be given a prominent name of its own and may not be
available for separate purchase.

For example, Microsoft Windows comes with a user interface known
as File Explorer, which provides features such as the Start menu and the
ability to click icons. (This program was named Windows Explorer prior to
Windows 8.) However, even if you are an experienced Windows user, you
may never have heard of File Explorer; Microsoft has chosen to give it a
very low profile, treating it as an integral part of the Microsoft Windows
environment. At a technical level, however, it is distinct from the operating
system proper. In order to make the distinction explicit, the true operating
system is often called the kernel. The kernel is the fundamental portion
of Microsoft Windows that provides an API supporting computations with
controlled interactions.

A similar distinction between the kernel and the user interface applies
to Linux. The Linux kernel provides the basic operating system services
through an API, whereas shells are the programs (such as bash and tcsh)
that interpret typed commands, and desktop environments are the programs,
such as KDE (K Desktop Environment) and GNOME, that handle graphical
interaction.

In this book, I will explain the workings of operating system kernels,
the true operating systems themselves, as opposed to the user-interface pro-
grams. One reason is because user-interface programs are not constructed
in any fundamentally different way than normal application programs. The

6 CHAPTER 1. INTRODUCTION

other reason is because an operating system need not have this sort of user
interface at all. Consider again the case of an embedded system that con-
trols automotive fuel injection. If the system is sufficiently sophisticated,
it may include an operating system. The main control program may run
other, more specialized programs. However, there is no ability for the user
to start an arbitrary program running through a shell or desktop environ-
ment. In this book, I will draw my examples from general-purpose systems
with which you might be familiar, but will emphasize the principles that
could apply in other contexts as well.

1.3 What Is Middleware?

Now that you know what an operating system is, I can turn to the other cat-
egory of software covered by this book: middleware. Middleware is software
occupying a middle position between application programs and operating
systems, as I will explain in this section.

Operating systems and middleware have much in common. Both are
software used to support other software, such as the application programs
you run. Both provide a similar range of services centered around con-
trolled interaction. Like an operating system, middleware may enforce rules
designed to keep the computations from interfering with one another. An
example is the rule that only one computation may modify a shared data
structure at a time. Like an operating system, middleware may bring com-
putations at different times into contact through persistent storage and may
support interaction between computations on different computers by pro-
viding network communication services.

Operating systems and middleware are not the same, however. They
rely upon different underlying providers of lower-level services. An operat-
ing system provides the services in its API by making use of the features
supported by the hardware. For example, it might provide API services
of reading and writing named, variable-length files by making use of a disk
drive’s ability to read and write numbered, fixed-length blocks of data. Mid-
dleware, on the other hand, provides the services in its API by making use
of the features supported by an underlying operating system. For example,
the middleware might provide API services for updating relational database
tables by making use of an operating system’s ability to read and write files
that contain the database.

This layering of middleware on top of an operating system, as illustrated
in Figure explains the name; middleware is in the middle of the vertical

1.3. WHAT IS MIDDLEWARE? 7

stack, between the application programs and the operating system. Viewed
horizontally rather than vertically, middleware is also in the middle of in-
teractions between different application programs (possibly even running
on different computer systems), because it provides mechanisms to support
controlled interaction through coordination, persistent storage, naming, and
communication.

I already mentioned relational database systems as one example of mid-
dleware. Such systems provide a more sophisticated form of persistent stor-
age than the files supported by most operating systems. I use Oracle as my
primary source of examples regarding relational database systems. Other
middleware I will use for examples in the book includes the Java 2 Plat-
form, Enterprise Edition (J2EE) and IBM’s WebSphere MQ. These systems
provide support for keeping computations largely isolated from undesirable
interactions, while allowing them to communicate with one another even if
running on different computers.

The marketing definition of middleware doesn’t always correspond ex-
actly with my technical definition. In particular, some middleware is of
such fundamental importance that it is distributed as part of the operat-
ing system bundle, rather than as a separate middleware product. As an
example, general-purpose operating systems all come equipped with some
mechanism for translating Internet hostnames, such as www.gustavus.edu,
into numerical addresses. These mechanisms are typically outside the oper-
ating system kernel, but provide a general supporting service to application
programs. Therefore, by my definition, they are middleware, even if not
normally labeled as such.

[
| Application | | Application |

1 |

: | Application |

1 1
1

| Middleware | g g g | Middleware |
Database
| Operating System | Table | Operating System |

Figure 1.2: Middleware uses services from an operating system and in turn
provides services to application programs to support controlled interaction.

8 CHAPTER 1. INTRODUCTION

1.4 Objectives for the Book

If you work your way through this book, you will gain both knowledge
and skills. Notice that I did not say anything about reading the book, but
rather about working your way through the book. Each chapter in this book
concludes with exercises, programming projects, exploration projects, and
some bibliographic or historical notes. To achieve the objectives of the book,
you need to work exercises, carry out projects, and occasionally venture
down one of the side trails pointed out by the end-of-chapter notes. Some of
the exploration projects will specifically direct you to do research in outside
sources, such as on the Internet or in a library. Others will call upon you to
do experimental work, such as measuring the performance consequences of
a particular design choice. If you are going to invest that kind of time and
effort, you deserve some idea of what you stand to gain from it. Therefore, I
will explain in the following paragraphs how you will be more knowledgeable
and skilled after finishing the book.

First, you will gain a general knowledge of how contemporary operat-
ing systems and middleware work and some idea why they work that way.
That knowledge may be interesting in its own right, but it also has prac-
tical applications. Recall that these systems provide supporting APIs for
application programmers to use. Therefore, one payoff will be that if you
program applications, you will be positioned to make more effective use of
the supporting APIs. This is true even though you won’t be an expert at
any particular API; instead, you’ll see the big picture of what services those
APIs provide.

Another payoff will be if you are in a role where you need to alter the
configuration of an operating system or middleware product in order to tune
its performance or make it best serve a particular context. Again, this one
book alone won’t give you all the specific knowledge you need about any
particular system, but it will give you the general background to make sense
out of more specialized references.

Perhaps the most significant payoff for learning the details of today’s
systems in the context of the reasons behind their designs is that you will
be in a better position to learn tomorrow’s systems. You will be able to see
in what ways they are different and in what ways they are fundamentally
still the same. You will be able to put new features into context, often as
a new solution to an old problem, or even just as a variant on an existing
solution. If you really get excited by what you learn from this book, you
could even use your knowledge as the foundation for more advanced study
and become one of the people who develops tomorrow’s systems.

1.5. MULTIPLE COMPUTATIONS ON ONE COMPUTER 9

Second, in addition to knowledge about systems, you will learn some
skills that are applicable even outside the context of operating systems and
middleware. Some of the most important skills come from the exploration
projects. For example, if you take those projects seriously, you’ll practice
not only conducting experiments, but also writing reports describing the
experiments and their results. That will serve you well in many contexts.

I have also provided you with some opportunities to develop proficiency
in using the professional literature, such as documentation and the papers
published in conference proceedings. Those sources go into more depth than
this book can, and they will always be more up-to-date.

From the programming projects, you’ll gain some skill at writing pro-
grams that have several interacting components operating concurrently with
one another and that keep their interactions under control. You’ll also de-
velop some skill at writing programs that interact over the Internet. In
neither case will you become a master programmer. However, in both cases,
you will be laying a foundation of skills that are relevant to a range of
development projects and environments.

Another example of a skill you can acquire is the ability to look at the
security ramifications of design decisions. I have a security section in each
chapter, rather than a security chapter only at the end of the book, because I
want you to develop the habit of asking, “What are the security issues here?”
That question is relevant even outside the realm of operating systems and
middleware.

As I hope you can see, studying operating systems and middleware can
provide a wide range of benefits, particularly if you engage yourself in it as
an active participant, rather than as a spectator. With that for motivation,
I will now take you on another tour of the services operating systems and
middleware provide. This tour is more detailed than Sections and
but not as detailed as Chapters 2] through

1.5 Multiple Computations on One Computer

The single most fundamental service an operating system provides is to allow
multiple computations to be going on at the same time, rather than forcing
each to wait until the previous one has run to completion. This allows
desktop computers to juggle multiple tasks for the busy humans seated in
front of their screens, and it allows server computers to be responsive to
requests originating from many different client computers on the Internet.
Beyond these responsiveness concerns, concurrent computations can also

10 CHAPTER 1. INTRODUCTION

make more efficient use of a computer’s resources. For example, while one
computation is stalled waiting for input to arrive, another computation can
be making productive use of the processor.

A variety of words can be used to refer to the computations underway
on a computer; they may be called threads, processes, tasks, or jobs. In this
book, I will use both the word “thread” and the word “process,” and it is
important that I explain now the difference between them.

A thread is the fundamental unit of concurrency. Any one sequence of
programmed actions is a thread. Executing a program might create multiple
threads, if the program calls for several independent sequences of actions run
concurrently with one another. Even if each execution of a program creates
only a single thread, which is the more normal case, a typical system will be
running several threads: one for each ongoing program execution, as well as
some that are internal parts of the operating system itself.

When you start a program running, you are always creating one or more
threads. However, you are also creating a process. The process is a container
that holds the thread or threads that you started running and protects
them from unwanted interactions with other unrelated threads running on
the same computer. For example, a thread running in one process cannot
accidentally overwrite memory in use by a different process.

Because human users normally start a new process running every time
they want to make a new computation happen, it is tempting to think of
processes as the unit of concurrent execution. This temptation is ampli-
fied by the fact that older operating systems required each process to have
exactly one thread, so that the two kinds of object were in one-to-one corre-
spondence, and it was not important to distinguish them. However, in this
book, I will consistently make the distinction. When I am referring to the
ability to set an independent sequence of programmed actions in motion, I
will write about creating threads. Only when I am referring to the ability
to protect threads will I write about creating processes.

In order to support threads, operating system APIs include features such
as the ability to create a new thread and to kill off an existing thread. In-
side the operating system, there must be some mechanism for switching
the computer’s attention between the various threads. When the operating
system suspends execution of one thread in order to give another thread a
chance to make progress, the operating system must store enough informa-
tion about the first thread to be able to successfully resume its execution
later. Chapter 2| addresses these issues.

Some threads may not be runnable at any particular time, because they
are waiting for some event, such as the arrival of input. However, in general,

1.6. INTERACTIONS BETWEEN COMPUTATIONS 11

an operating system will be confronted with multiple runnable threads and
will have to choose which ones to run at each moment. This problem of
scheduling threads’ execution has many solutions, which are surveyed in
Chapter The scheduling problem is interesting, and has generated so
many solutions, because it involves the balancing of system users’ competing
interests and values. No individual scheduling approach will make everyone
happy all the time. My focus is on explaining how the different scheduling
approaches fit different contexts of system usage and achieve differing goals.
In addition I explain how APIs allow programmers to exert control over
scheduling, for example, by indicating that some threads should have higher
priority than others.

1.6 Controlling the Interactions Between Compu-
tations

Running multiple threads at once becomes more interesting if the threads
need to interact, rather than execute completely independently of one an-
other. For example, one thread might be producing data that another thread
consumes. If one thread is writing data into memory and another is read-
ing the data out, you don’t want the reader to get ahead of the writer and
start reading from locations that have yet to be written. This illustrates one
broad family of control for interaction: control over the relative timing of
the threads’ execution. Here, a reading step must take place after the cor-
responding writing step. The general name for control over threads’ timing
is synchronization.

Chapter M| explains several common synchronization patterns, includ-
ing keeping a consumer from outstripping the corresponding producer. It
also explains the mechanisms that are commonly used to provide synchro-
nization, some of which are supported directly by operating systems, while
others require some modest amount of middleware, such as the Java runtime
environment.

That same chapter also explains a particularly important difficulty that
can arise from the use of synchronization. Synchronization can force one
thread to wait for another. What if the second thread happens to be wait-
ing for the first? This sort of cyclic waiting is known as a deadlock. My
discussion of ways to cope with deadlock also introduces some significant
middleware, because database systems provide an interesting example of
deadlock handling.

In Chapter 5| I expand on the themes of synchronization and middleware

12 CHAPTER 1. INTRODUCTION

by explaining transactions, which are commonly supported by middleware.
A transaction is a unit of computational work for which no intermediate
state from the middle of the computation is ever visible. Concurrent trans-
actions are isolated from seeing each other’s intermediate storage. Addi-
tionally, if a transaction should fail, the storage will be left as it was before
the transaction started. Even if the computer system should catastroph-
ically crash in the middle of a transaction’s execution, the storage after
rebooting will not reflect the partial transaction. This prevents results of a
half-completed transaction from becoming visible. Transactions are incred-
ibly useful in designing reliable information systems and have widespread
commercial deployment. They also provide a good example of how mathe-
matical reasoning can be used to help design practical systems; this will be
the chapter where I most prominently expect you to understand a proof.

Even threads that have no reason to interact may accidentally interact, if
they are running on the same computer and sharing the same memory. For
example, one thread might accidentally write into memory being used by the
other. This is one of several reasons why operating systems provide virtual
memory, the topic of Chapter [6] Virtual memory refers to the technique of
modifying addresses on their way from the processor to the memory, so that
the addresses actually used for storing values in memory may be different
from those appearing in the processor’s load and store instructions. This
is a general mechanism provided through a combination of hardware and
operating system software. I explain several different goals this mechanism
can serve, but the most simple is isolating threads in one process from those
in another by directing their memory accesses to different regions of memory.

Having broached the topic of providing processes with isolated virtual
memory, I devote Chapter [7] to processes. This chapter explains an API
for creating processes. However, I also focus on protection mechanisms, not
only by building on Chapter [f]s introduction of virtual memory, but also by
explaining other forms of protection that are used to protect processes from
one another and to protect the operating system itself from the processes.
Some of these protection mechanisms can be used to protect not just the
storage of values in memory, but also longer-term data storage, such as files,
and even network communication channels. Therefore, Chapter [7|lays some
groundwork for the later treatment of these topics.

Chapter [7] also provides me an opportunity to clarify one point about
threads left open by Chapter By showing how operating systems pro-
vide a protective boundary between themselves and the running application
processes, I can explain where threads fall relative to this boundary. In par-
ticular, there are threads that are contained entirely within the operating

1.7. SUPPORTING INTERACTION ACROSS TIME 13

system kernel, others that are contained entirely within an application pro-
cess, and yet others that cross the boundary, providing support from within
the kernel for concurrent activities within the application process. Although
it might seem natural to discuss these categories of threads in Chapter 2] the
chapter on threads, I really need to wait for Chapter [7]in order to make any
more sense out of the distinctions than I've managed in this introductory
paragraph.

When two computations run concurrently on a single computer, the hard
part of supporting controlled interaction is to keep the interaction under con-
trol. For example, in my earlier example of a pair of threads, one produces
some data and the other consumes it. In such a situation, there is no great
mystery to how the data can flow from one to the other, because both are
using the same computer’s memory. The hard part is regulating the use of
that shared memory. This stands in contrast to the interactions across time
and space, which I will address in Sections [1.7] and If the producer and
consumer run at different times, or on different computers, the operating
system and middleware will need to take pains to convey the data from one
to the other.

1.7 Supporting Interaction Across Time

General purpose operating systems all support some mechanism for com-
putations to leave results in long-term storage, from which they can be
retrieved by later computations. Because this storage persists even when
the system is shut down and started back up, it is known as persistent stor-
age. Normally, operating systems provide persistent storage in the form of
named files, which are organized into a hierarchy of directories or folders.
Other forms of persistent storage, such as relational database tables and
application-defined persistent objects, are generally supported by middle-
ware. In Chapter [§] I focus on file systems, though I also explain some of
the connections with middleware. For example, I compare the storage of file
directories with that of database indexes. This comparison is particularly
important as these areas are converging. Already the underlying mecha-
nisms are very similar, and file systems are starting to support indexing
services like those provided by database systems.

There are two general categories of file APIs, both of which I cover in
Chapter The files can be made a part of the process’s virtual mem-
ory space, accessible with normal load and store instructions, or they can
be treated separately, as external entities to read and write with explicit

14 CHAPTER 1. INTRODUCTION

operations.

Either kind of file API provides a relatively simple interface to some quite
significant mechanisms hidden within the operating system. Chapter [§] also
provides a survey of some of these mechanisms.

As an example of a simple interface to a sophisticated mechanism, an
application programmer can make a file larger simply by writing additional
data to the end of the file. The operating system, on the other hand, has
to choose the location where the new data will be stored. When disks are
used, this space allocation has a strong influence on performance, because
of the physical realities of how disk drives operate.

Another job for the file system is to keep track of where the data for each
file is located. It also keeps track of other file-specific information, such as
access permissions. Thus, the file system not only stores the files’ data, but
also stores metadata, which is data describing the data.

All these mechanisms are similar to those used by middleware for pur-
poses such as allocating space to hold database tables. Operating systems
and middleware also store information, such as file directories and database
indexes, used to locate data. The data structures used for these naming and
indexing purposes are designed for efficient access, just like those used to
track the allocation of space to stored objects.

To make the job of operating systems and middleware even more chal-
lenging, persistent storage structures are expected to survive system crashes
without significant loss of integrity. For example, it is not acceptable after
a crash for specific storage space to be listed as available for allocation and
also to be listed as allocated to a file. Such a confused state must not occur
even if the crash happened just as the file was being created or deleted.
Thus, Chapter [§ builds on Chapter [5s explanation of atomic transactions,
while also outlining some other mechanisms that can be used to protect the
integrity of metadata, directories, and indexes.

Persistent storage is crucially important, perhaps even more so in the
Internet age than in prior times, because servers now hold huge amounts of
data for use by clients all over the world. Nonetheless, persistent storage no
longer plays as unique a role as it once did. Once upon a time, there were
many computer systems in which the only way processes communicated was
through persistent storage. Today, that is almost unthinkable, because com-
munication often spans the Internet. Therefore, as I explain in Section [1.§
operating systems provide support for networking, and middleware provides
further support for the construction of distributed systems.

1.8. SUPPORTING INTERACTION ACROSS SPACE 15

1.8 Supporting Interaction Across Space

In order to build coherent software systems with components operating on
differing computers, programmers need to solve lots of problems. Consider
two examples: data flowing in a stream must be delivered in order, even
if sent by varying routes through interconnected networks, and message
delivery must be incorporated into the all-or-nothing guarantees provided
by transactions. Luckily, application programmers don’t need to solve most
of these problems, because appropriate supporting services are provided by
operating systems and middleware.

I divide my coverage of these services into two chapters. Chapter [9] pro-
vides a foundation regarding networking, so that this book will stand on
its own if you have not previously studied networking. That chapter also
covers services commonly provided by operating systems, or in close conjunc-
tion with operating systems, such as distributed file systems. Chapter
in contrast, explains the higher-level services that middleware provides for
application-to-application communication, in such forms as messaging and
web services. Each chapter introduces example APIs that you can use as an
application programmer, as well as the more general principles behind those
specific APIs.

Networking systems, as I explain in Chapter [J] are generally partitioned
into layers, where each layer makes use of the services provided by the layer
under it in order to provide additional services to the layer above it. At the
bottom of the stack is the physical layer, concerned with such matters as
copper, fiber optics, radio waves, voltages, and wavelengths. Above that is
the link layer, which provides the service of transmitting a chunk of data to
another computer on the same local network. This is the point where the op-
erating system becomes involved. Building on the link-layer foundation, the
operating system provides the services of the network layer and the transport
layer. The network layer arranges for data to be relayed through intercon-
nected networks so as to arrive at a computer that may be elsewhere in the
world. The transport layer builds on top of this basic computer-to-computer
data transmission to provide more useful application-to-application commu-
nication channels. For example, the transport layer typically uses sequence
numbering and retransmission to provide applications the service of in-order,
loss-free delivery of streams of data. This is the level of the most common
operating system API, which provides sockets, that is, endpoints for these
transport-layer connections.

The next layer up is the application layer. A few specialized application-
layer services, such as distributed file systems, are integrated with operating

16 CHAPTER 1. INTRODUCTION

systems. However, most application-layer software, such as web browsers
and email programs, is written by application programmers. These applica-
tions can be built directly on an operating system’s socket API and exchange
streams of bytes that comply with standardized protocols. In Chapter [0 I
illustrate this possibility by showing how web browsers and web servers
communicate.

Alternatively, programmers of distributed applications can make use of
middleware to work at a higher level than sending bytes over sockets. I show
two basic approaches to this in Chapter messaging and Remote Proce-
dure Calls (RPCs). Web services are a particular approach to standardizing
these kinds of higher-level application communication, and have often been
used with RPCs.

In a messaging system, an application program requests the delivery of a
message. The messaging system not only delivers the message, which lower-
level networking could accomplish, but also provides additional services. For
example, the messaging is often integrated with transaction processing. A
successful transaction may retrieve a message from an incoming message
queue, update a database in response to that message, and send a response
message to an outgoing queue. If the transaction fails, none of these three
changes will happen; the request message will remain in the incoming queue,
the database will remain unchanged, and the response message will not be
queued for further delivery. Another common service provided by messag-
ing systems is to deliver a message to any number of recipients who have
subscribed to receive messages of a particular kind; the sender need not be
aware of who the actual receivers are.

Middleware can also provide a mechanism for Remote Procedure Call
(RPC), in which communication between a client and a server is made to
look like an ordinary programming language procedure call, such as invoking
a method on an object. The only difference is that the object in question is
located on a different computer, and so the call and return involve network
communication. The middleware hides this complexity, so that the applica-
tion programmer can work largely as though all the objects were local. In
Chapter I explain this concept more fully and mention that it is often
used in the form of web services. A web service is an application-layer entity
that programs can communicate with using standardized protocols similar
to those humans use to browse the web.

1.9. SECURITY 17

1.9 Security

Operating systems and middleware are often the targets of attacks by ad-
versaries trying to defeat system security. Even attacks aimed at application
programs often relate to operating systems and middleware. In particular,
easily misused features of operating systems and middleware can be the
root cause of an application-level vulnerability. On the other hand, operat-
ing systems and middleware provide many features that can be very helpful
in constructing secure systems.

A system is secure if it provides an acceptably low risk that an adversary
will prevent the system from achieving its owner’s objectives. In Chapter[I]
I explain in more detail how to think about risk and about the conflicting
objectives of system owners and adversaries. In particular, I explain that
some of the most common objectives for owners fall into four categories:
confidentiality, integrity, availability, and accountability. A system provides
confidentiality if it prevents inappropriate disclosure of information, integrity
if it prevents inappropriate modification or destruction of information, and
availability if it prevents inappropriate interference with legitimate usage. A
system provides accountability if it provides ways to check how authorized
users have exercised their authority. All of these rely on authentication, the
ability of a system to verify the identity of a user.

Many people have a narrow view of system security. They think of those
features that would not even exist, were it not for security issues. Clearly,
logging in with a password (or some other, better form of authentication) is
a component of system security. Equally clearly, having permission to read
some files, but not others, is a component of system security, as are crypto-
graphic protocols used to protect network communication from interception.
However, this view of security is dangerously incomplete.

You need to keep in mind that the design of any component of the
operating system can have security consequences. Even those parts whose
design is dominated by other considerations must also reflect some proactive
consideration of security consequences, or the overall system will be insecure.
In fact, this is an important principle that extends beyond the operating
system to include application software and the humans who operate it.

Therefore, I will make a habit of addressing security issues in every
chapter, rather than only at the end of the book. Specifically, each chapter
concludes with a section pointing out some of the key security issues asso-
ciated with that chapter’s topic. I also provide a more coherent treatment
of security by concluding the book as a whole with Chapter which is
devoted exclusively to security. That chapter takes a holistic approach to

18

CHAPTER 1. INTRODUCTION

security, in which human factors play as important a role as technical ones.

Exercises

1.1

1.2

1.3

14

1.5

1.6

1.7

What is the difference between an operating system and middleware?
What do operating systems and middleware have in common?
What is the relationship between threads and processes?

What is one way an operating system might isolate threads from un-
wanted interactions, and what is one way that middleware might do
so?

What is one way an operating system might provide persistent storage,
and what is one way middleware might do so?

What is one way an operating system might support network commu-
nication, and what is one way middleware might do so?

Of all the topics previewed in this chapter, which one are you most
looking forward to learning more about? Why?

Programming Project

1.1

Write, test, and debug a program in the language of your choice to
carry out any task you choose. Then write a list of all the services
you suspect the operating system is providing in order to support the
execution of your sample program. If you think the program is also
relying on any middleware services, list those as well.

Exploration Projects

1.1

Look through the titles of the papers presented at several recent con-
ferences hosted by the USENIX Association (The Advanced Comput-
ing Systems Association); you can find the conference proceedings at
www.useniz.org. To get a better idea what an individual paper is
about, click the title to show the abstract, which is a short summary
of the paper. Based on titles and abstracts, pick out a few papers that
you think would make interesting supplementary reading as you work

1.9. SECURITY 19

your way through this book. Write down a list showing the biblio-
graphic information for the papers you selected and, as near as you
can estimate, where in this book’s table of contents they would be
appropriate to read.

1.2 Conduct a simple experiment in which you take some action on a
computer system and observe what the response is. You can choose
any action you wish and any computer system for which you have
appropriate access. You can either observe a quantitative result, such
as how long the response takes or how much output is produced, or
a qualitative result, such as in what form the response arrives. Now,
try replicating the experiment. Do you always get the same result?
Similar ones? Are there any factors that need to be controlled in
order to get results that are at least approximately repeatable? For
example, to get consistent times, do you need to reboot the system
between each trial and prevent other people from using the system?
To get consistent output, do you need to make sure input files are
kept unchanged? If your action involves a physical device, such as a
printer, do you have to control variables such as whether the printer
is stocked with paper? Finally, write up a careful report, in which
you explain both what experiment you tried and what results you
observed. You should explain how repeatable the results proved to be
and what limits there were on the repeatability. You should describe
the hardware and software configuration in enough detail that someone
else could replicate your experiment and would be likely to get similar
results.

Notes

The idea that an operating system should isolate computations from un-
wanted interactions, and yet support desirable interactions, has a long her-
itage. A 1962 paper [38] by Corbat6, Daggett, and Daley points out that
“different user programs if simultaneously in core memory may interfere with
each other or the supervisor program so some form of memory protection
mode should be available when operating user programs.” However, that
same paper goes on to say that although “great care went into making each
user independent of the other users ... it would be a useful extension of the
system if this were not always the case,” so that the computer system could
support group work, such as war games.

20 CHAPTER 1. INTRODUCTION

Middleware is not as well-known to the general public as operating sys-
tems are, though commercial information-system developers would be lost
without it. One attempt to introduce middleware to a somewhat broader
audience was Bernstein’s 1996 survey article [17].

The USENIX Association, mentioned in Exploration Project is only
one of several very fine professional societies holding conferences related to
the subject matter of this book. The reason why I specifically recommended
looking through their proceedings is that they tend to be particularly ac-
cessible to students. In part this is because USENIX focuses on bringing
practitioners and academics together; thus, the papers generally are prag-
matic without being superficial. The full text is available on their website.

Chapter 2

Threads

2.1 Introduction

Computer programs consist of instructions, and computers carry out se-
quences of computational steps specified by those instructions. We call
each sequence of computational steps that are strung together one after an-
other a thread. The simplest programs to write are single-threaded, with
instructions that should be executed one after another in a single sequence.
However, in Section you will learn how to write programs that produce
more than one thread of execution, each an independent sequence of compu-
tational steps, with few if any ordering constraints between the steps in one
thread and those in another. Multiple threads can also come into existence
by running multiple programs, or by running the same program more than
once.

Note the distinction between a program and a thread; the program con-
tains instructions, whereas the thread consists of the execution of those
instructions. Even for single-threaded programs, this distinction matters.
If a program contains a loop, then a very short program could give rise
to a very long thread of execution. Also, running the same program ten
times will give rise to ten threads, all executing one program. Figure [2.1
summarizes how threads arise from programs.

Each thread has a lifetime, extending from the time its first instruc-
tion execution occurs until the time of its last instruction execution. If two
threads have overlapping lifetimes, as illustrated in Figure we say they
are concurrent. One of the most fundamental goals of an operating sys-
tem is to allow multiple threads to run concurrently on the same computer.
That is, rather than waiting until the first thread has completed before a

21

22 CHAPTER 2. THREADS

Single-threaded program Multiple single-threaded programs
_ Thead _, Threada

Thread B

Multi-threaded program Multiple runs of one single-threaded program
Spawn
Thread A Thread A
—_

~

“Thread B ——
Thread B

Figure 2.1: Programs give rise to threads.

Sequential threads

Concurrent threads running simultaneously on two processors

Concurrent threads (with gaps in their executions) interleaved on one processor

e~ o~ =

—~— —~ ——

Figure 2.2: Sequential and concurrent threads

2.2. EXAMPLE OF MULTITHREADED PROGRAMS 23

second thread can run, it should be possible to divide the computer’s atten-
tion between them. If the computer hardware includes multiple processors,
then it will naturally be possible to run threads concurrently, one per pro-
cessor. However, the operating system’s users will often want to run more
concurrent threads than the hardware has processors, for reasons described
in Section Therefore, the operating system will need to divide each pro-
cessor’s attention between multiple threads. In this introductory textbook
I will mostly limit myself to the case of all the threads needing to be run on
a single processor. I will explicitly indicate those places where I do address
the more general multi-processor case.

In order to make the concept of concurrent threads concrete, Section
shows how to write a program that spawns multiple threads each time the
program is run. Once you know how to create threads, I will explain in Sec-
tion [2.3] some of the reasons why it is desirable to run multiple threads con-
currently and will offer some typical examples of the uses to which threads
are put.

These first two sections explain the application programmer’s view of
threads: how and why the programmer would use concurrent threads. This
sets us up for the next question: how does the operating system support
the application programmer’s desire for concurrently executing threads? In
Sections [2.4) and 2.5 we will examine how the system does so. In this chap-
ter, we will consider only the fundamentals of how the processor’s attention
is switched from one thread to another. Some of the related issues I address
in other chapters include deciding which thread to run at each point (Chap-
ter [3)) and controlling interaction among the threads (Chapters @ and
. Also, as explained in Chapter I will wait until Chapterto explain the
protection boundary surrounding the operating system. Thus, I will need
to wait until that chapter to distinguish threads that reside entirely within
that boundary, threads provided from inside the boundary for use outside of
it, and threads residing entirely outside the boundary (known as user-level
threads or, in Microsoft Windows, fibers).

Finally, the chapter concludes with the standard features of this book:
a brief discussion of security issues, followed by exercises, programming and
exploration projects, and notes.

2.2 Example of Multithreaded Programs

Whenever a program initially starts running, the computer carries out the
program’s instructions in a single thread. Therefore, if the program is in-

24 CHAPTER 2. THREADS

tended to run in multiple threads, the original thread needs at some point
to spawn off a child thread that does some actions, while the parent thread
continues to do others. (For more than two threads, the program can repeat
the thread-creation step.) Most programming languages have an application
programming interface (or API) for threads that includes a way to create
a child thread. In this section, I will use the Java API and the API for
C that is called pthreads, for POSIX threads. (As you will see throughout
the book, POSIX is a comprehensive specification for UNIX-like systems,
including many APIs beyond just thread creation.)

Realistic multithreaded programming requires the control of thread in-
teractions, using techniques I show in Chapter [d] Therefore, my examples in
this chapter are quite simple, just enough to show the spawning of threads.

To demonstrate the independence of the two threads, I will have both
the parent and the child thread respond to a timer. One will sleep three
seconds and then print out a message. The other will sleep five seconds and
then print out a message. Because the threads execute concurrently, the
second message will appear approximately two seconds after the first. (In
Programming Projects and you can write a somewhat more
realistic program, where one thread responds to user input and the other to
the timer.)

Figure 2.3 shows the Java version of this program. The main program
first creates a Thread object called childThread. The Runnable object asso-
ciated with the child thread has a run method that sleeps three seconds (ex-
pressed as 3000 milliseconds) and then prints a message. This run method
starts running when the main procedure invokes childThread.start (). Be-
cause the run method is in a separate thread, the main thread can continue
on to the subsequent steps, sleeping five seconds (5000 milliseconds) and
printing its own message.

Figure is the equivalent program in C, using the pthreads API. The
child procedure sleeps three seconds and prints a message. The main proce-
dure creates a child_thread running the child procedure, and then itself
sleeps five seconds and prints a message. The most significant difference
from the Java API is that pthread_create both creates the child thread
and starts it running, whereas in Java those are two separate steps.

In addition to portable APIs, such as the Java and pthreads APIs, many
systems provide their own non-portable APIs. For example, Microsoft Win-
dows has the Win32 API, with procedures such as CreateThread and Sleep.
In Programming Project you can modify the program from Figure [2.4
to use this API.

2.2. EXAMPLE OF MULTITHREADED PROGRAMS 25

public class Simple2Threads {
public static void main(String args[]){
Thread childThread = new Thread(new Runnable(){
public void run(){
sleep(3000);
System.out.println("Child is done sleeping 3 seconds.");
b
s
childThread.start();
sleep(5000);
System.out.println("Parent is done sleeping 5 seconds.");

}

private static void sleep(int milliseconds){
try{
Thread.sleep(milliseconds);
} catch(InterruptedException e){
// ignore this exception; it won’t happen anyhow
}
}
}

Figure 2.3: A simple multithreaded program in Java

26 CHAPTER 2. THREADS

#include <pthread.h>
#include <unistd.h>
#include <stdio.h>

static void *child(void *ignored){
sleep(3);
printf("Child is done sleeping 3 seconds.\n");
return NULL;

}

int main(int argc, char *argv[]){
pthread_t child_thread;
int code;

code = pthread_create(&child_thread, NULL, child, NULL);
if (code){
fprintf (stderr, "pthread create failed with code %d\n", code);
}
sleep(5);
printf ("Parent is done sleeping 5 seconds.\n");
return O;

Figure 2.4: A simple multithreaded program in C

2.3. REASONS FOR USING CONCURRENT THREADS 27

2.3 Reasons for Using Concurrent Threads

You have now seen how a single execution of one program can result in
more than one thread. Presumably, you were already at least somewhat
familiar with generating multiple threads by running multiple programs, or
by running the same program multiple times. Regardless of how the threads
come into being, we are faced with a question. Why is it desirable for
the computer to execute multiple threads concurrently, rather than waiting
for one to finish before starting another? Fundamentally, most uses for
concurrent threads serve one of two goals:

Responsiveness: allowing the computer system to respond quickly to some-
thing external to the system, such as a human user or another com-
puter system. Even if one thread is in the midst of a long computation,
another thread can respond to the external agent. Our example pro-
grams in Section illustrated responsiveness: both the parent and
the child thread responded to a timer.

Resource utilization: keeping most of the hardware resources busy most
of the time. If one thread has no need for a particular piece of hard-
ware, another may be able to make productive use of it.

Each of these two general themes has many variations, some of which we
explore in the remainder of this section. A third reason why programmers
sometimes use concurrent threads is as a tool for modularization. With this,
a complex system may be decomposed into a group of interacting threads.
Let’s start by considering the responsiveness of a web server, which pro-
vides many client computers with the specific web pages they request over
the Internet. Whenever a client computer makes a network connection to
the server, it sends a sequence of bytes that contain the name of the desired
web page. Therefore, before the server program can respond, it needs to
read in those bytes, typically using a loop that continues reading in bytes
from the network connection until it sees the end of the request. Suppose
one of the clients is connecting using a very slow network connection, per-
haps via a dial-up modem. The server may read the first part of the request
and then have to wait a considerable length of time before the rest of the
request arrives over the network. What happens to other clients in the
meantime? It would be unacceptable for a whole website to grind to a halt,
unable to serve any clients, just waiting for one slow client to finish issuing
its request. One way some web servers avoid this unacceptable situation
is by using multiple threads, one for each client connection, so that even if

28 CHAPTER 2. THREADS

one thread is waiting for data from one client, other threads can continue
interacting with the other clients. Figure illustrates the unacceptable
single-threaded web server and the more realistic multithreaded one.

On the client side, a web browser may also illustrate the need for re-
sponsiveness. Suppose you start loading in a very large web page, which
takes considerable time to download. Would you be happy if the computer
froze up until the download finished? Probably not. You expect to be able
to work on a spreadsheet in a different window, or scroll through the first
part of the web page to read as much as has already downloaded, or at least
click on the Stop button to give up on the time-consuming download. Each
of these can be handled by having one thread tied up loading the web page
over the network, while another thread is responsive to your actions at the
keyboard and mouse.

This web browser scenario also lets me foreshadow later portions of the
textbook concerning the controlled interaction between threads. Note that
I sketched several different things you might want to do while the web page
downloaded. In the first case, when you work on a spreadsheet, the two
concurrent threads have almost nothing to do with one another, and the op-
erating system’s job, beyond allowing them to run concurrently, will mostly
consist of isolating each from the other, so that a bug in the web browser
doesn’t overwrite part of your spreadsheet, for example. This is gener-
ally done by encapsulating the threads in separate protection environments
known as processes, as we will discuss in Chapters |§| and |7l (Some systems
call processes tasks, while others use task as a synonym for thread.) If, on
the other hand, you continue using the browser’s user interface while the
download continues, the concurrent threads are closely related parts of a

4 N

Single-threaded Multi-threaded
web server web server

L[
\
\

UL

= Other
clients

clients

Figure 2.5: Single-threaded and multithreaded web servers

2.3. REASONS FOR USING CONCURRENT THREADS 29

single application, and the operating system need not isolate the threads
from one another. However, it may still need to provide mechanisms for
regulating their interaction. For example, some coordination between the
downloading thread and the user-interface thread is needed to ensure that
you can scroll through as much of the page as has been downloaded, but
no further. This coordination between threads is known as synchronization
and is the topic of Chapters [4 and

Turning to the utilization of hardware resources, the most obvious sce-
nario is when you have a dual-processor computer. In this case, if the system
ran only one thread at a time, only half the processing capacity would ever
be used. Even if the human user of the computer system doesn’t have more
than one task to carry out, there may be useful housekeeping work to keep
the second processor busy. For example, most operating systems, if asked
to allocate memory for an application program’s use, will store all zeros into
the memory first. Rather than holding up each memory allocation while
the zeroing is done, the operating system can have a thread that proac-
tively zeros out unused memory, so that when needed, it will be all ready. If
this housekeeping work (zeroing of memory) were done on demand, it would
slow down the system’s real work; by using a concurrent thread to utilize the
available hardware more fully, the performance is improved. This example
also illustrates that not all threads need to come from user programs. A
thread can be part of the operating system itself, as in the example of the
thread zeroing out unused memory.

Even in a single-processor system, resource utilization considerations
may justify using concurrent threads. Remember that a computer system
contains hardware resources, such as disk drives, other than the processor.
Suppose you have two tasks to complete on your PC: you want to scan all
the files on disk for viruses, and you want to do a complicated photo-realistic
rendering of a three-dimensional scene including not only solid objects, but
also shadows cast on partially transparent smoke clouds. From experience,
you know that each of these will take about an hour. If you do one and then
the other, it will take two hours. If instead you do the two concurrently—
running the virus scanner in one window while you run the graphics render-
ing program in another window—you may be pleasantly surprised to find
both jobs done in only an hour and a half.

The explanation for the half-hour savings in elapsed time is that the virus
scanning program spends most of its time using the disk drive to read files,
with only modest bursts of processor activity each time the disk completes a
read request, whereas the rendering program spends most of its time doing
processing, with very little disk activity. As illustrated in Figure running

30 CHAPTER 2. THREADS

them in sequence leaves one part of the computer’s hardware idle much of
the time, whereas running the two concurrently keeps the processor and
disk drive both busy, improving the overall system efficiency. Of course,
this assumes the operating system’s scheduler is smart enough to let the
virus scanner have the processor’s attention (briefly) whenever a disk request
completes, rather than making it wait for the rendering program. I will
address this issue in Chapter

As you have now seen, threads can come from multiple sources and
serve multiple roles. They can be internal portions of the operating system,
as in the example of zeroing out memory, or part of the user’s application
software. In the latter case, they can either be dividing up the work within a
multithreaded process, such as the web server and web browser examples, or
can come from multiple independent processes, as when a web browser runs
in one window and a spreadsheet in another. Regardless of these variations,
the typical reasons for running the threads concurrently remain unchanged:
either to provide increased responsiveness or to improve system efficiency by
more fully utilizing the hardware. Moreover, the basic mechanism used to
divide the processor’s attention among multiple threads remains the same
in these different cases as well; I describe that mechanism in Sections [2.4]
and Of course, some cases require the additional protection mechanisms
provided by processes, which we discuss in Chapters[6]and[7] However, even
then, it is still necessary to leave off work on one thread and pick up work
on another.

2.4 Switching Between Threads

In order for the operating system to have more than one thread underway
on a processor, the system needs to have some mechanism for switching
attention between threads. In particular, there needs to be some way to
leave off from in the middle of a thread’s sequence of instructions, work for
a while on other threads, and then pick back up in the original thread righ